版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
余江縣第一中學(xué)2025屆數(shù)學(xué)高二上期末考試試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若雙曲線的漸近線方程為,則的值為()A.2 B.3C.4 D.62.直線的傾斜角的大小為()A. B.C. D.3.已知正三棱柱的側(cè)棱長(zhǎng)與底面邊長(zhǎng)相等,則AB1與側(cè)面ACC1A1所成角的正弦值等于A. B.C. D.4.如圖,我市某地一拱橋垂直軸截面是拋物線,已知水利人員在某個(gè)時(shí)刻測(cè)得水面寬,則此時(shí)刻拱橋的最高點(diǎn)到水面的距離為()A. B.C. D.5.復(fù)數(shù),則對(duì)應(yīng)的點(diǎn)所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知圓,則圓上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最小值為()A.-1 B.C.+1 D.67.已知直線與圓交于A,B兩點(diǎn),O為原點(diǎn),且,則實(shí)數(shù)m等于()A. B.C. D.8.如圖,是函數(shù)的部分圖象,且關(guān)于直線對(duì)稱(chēng),則()A. B.C. D.9.“”是“方程表示焦點(diǎn)在x軸上的橢圓”的()A.充要條件 B.必要而不充分條件C.充分而不必要條件 D.既不充分也不必要條件10.等差數(shù)列x,,,…的第四項(xiàng)為()A.5 B.6C.7 D.811.設(shè),則的一個(gè)必要不充分條件為()A. B.C. D.12.是數(shù)列,,,-17,中的第幾項(xiàng)()A第項(xiàng) B.第項(xiàng)C.第項(xiàng) D.第項(xiàng)二、填空題:本題共4小題,每小題5分,共20分。13.若,若,則______14.曲線圍成的圖形的面積為_(kāi)__________.15.已知向量與是平面的兩個(gè)法向量,則__________16.在中,,,,則此三角形的最大邊長(zhǎng)為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某地從今年8月份開(kāi)始啟動(dòng)12-14歲人群新冠肺炎疫苗的接種工作,共有8千人需要接種疫苗.前4周的累計(jì)接種人數(shù)統(tǒng)計(jì)如下表:前x周1234累計(jì)接種人數(shù)y(千人)2.5344.5(1)求y關(guān)于的線性回歸方程;(2)根據(jù)(1)中所求的回歸方程,預(yù)計(jì)該地第幾周才能完成疫苗接種工作?參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為,18.(12分)如圖,在四棱錐中,底面是平行四邊形,,M,N分別為的中點(diǎn),.(1)證明:;(2)求直線與平面所成角的正弦值.19.(12分)已知函數(shù)(1)求的單調(diào)區(qū)間;(2)若,求的最大值與最小值20.(12分)已知點(diǎn),橢圓:的離心率為,是橢圓的右焦點(diǎn),直線的斜率為,為坐標(biāo)原點(diǎn).設(shè)過(guò)點(diǎn)的動(dòng)直線與相交于,兩點(diǎn)(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請(qǐng)說(shuō)明理由21.(12分)已知公差不為零的等差數(shù)列的前項(xiàng)和為,,且,,成等比數(shù)列(1)求的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和22.(10分)已知等差數(shù)列的前n項(xiàng)和為,等比數(shù)列的前n項(xiàng)和為,且,,(1)求,;(2)已知,,試比較,的大小
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)雙曲線方程確定焦點(diǎn)位置,再根據(jù)漸近線方程為求解.【詳解】因?yàn)殡p曲線所以焦點(diǎn)在x軸上,又因?yàn)闈u近線方程為,所以,所以.故選:A【點(diǎn)睛】本題主要考查雙曲線的幾何性質(zhì),還考查了理解辨析的能力,屬于基礎(chǔ)題.2、B【解析】由直線方程,可知直線的斜率,設(shè)直線的傾斜角為,則,又,所以,故選3、C【解析】過(guò)作,連接,由于,故平面,所以所求直線與平面所成的角為,設(shè)棱長(zhǎng)為,則,故,.點(diǎn)睛:本題主要考查空間立體幾何直線與平面的位置關(guān)系,考查直線與平面所成的角,考查線面垂直的證明方法和常見(jiàn)幾何體的結(jié)構(gòu)特征.由于題目所給幾何體為直三棱柱,故側(cè)棱和底面垂直,這是一個(gè)重要的隱含條件,通過(guò)作交線的垂線,即可得到高,由此作出二面角的平面角.4、D【解析】代入計(jì)算即可.【詳解】設(shè)B點(diǎn)的坐標(biāo)為,由拋物線方程得,則此時(shí)刻拱橋的最高點(diǎn)到水面的距離為2米.故選:D5、C【解析】化簡(jiǎn)復(fù)數(shù),根據(jù)復(fù)數(shù)的幾何意義,即可求解.【詳解】由題意,復(fù)數(shù),所以復(fù)數(shù)對(duì)應(yīng)的點(diǎn)為位于第三象限.故選:C.6、A【解析】先求出圓心和半徑,求出圓心到坐標(biāo)原點(diǎn)的距離,從而求出圓上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最小值.【詳解】變形為,故圓心為,半徑為1,故圓心到原點(diǎn)的距離為,故圓上的點(diǎn)到坐標(biāo)原點(diǎn)的距離最小值為.故選:A7、A【解析】根據(jù)給定條件求出,再求出圓O到直線l的距離即可計(jì)算作答.【詳解】圓的圓心O,半徑,因,則,而,則,即是正三角形,點(diǎn)O到直線l的距離,因此,,解得,所以實(shí)數(shù)m等于.故選:A8、C【解析】先根據(jù)條件確定為函數(shù)的極大值點(diǎn),得到的值,再根據(jù)圖像的單調(diào)性和導(dǎo)數(shù)幾何意義得到和的正負(fù)即可判斷.【詳解】根據(jù)題意得,為函數(shù)部分函數(shù)的極大值點(diǎn),所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為銳角,根據(jù)導(dǎo)數(shù)的幾何意義,所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為鈍角,根據(jù)導(dǎo)數(shù)的幾何意義所以.即.故選:C.9、A【解析】由橢圓的標(biāo)準(zhǔn)方程結(jié)合充分必要條件的定義即得.【詳解】若,則方程表示焦點(diǎn)在軸上的橢圓;反之,若方程表示焦點(diǎn)在軸上的橢圓,則;所以“”是“方程表示焦點(diǎn)在x軸上的橢圓”的充要條件.故選:A.10、A【解析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項(xiàng).【詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項(xiàng)為-1+(4-1)×2=5.故選:A.11、C【解析】利用必要條件和充分條件的定義判斷.【詳解】A選項(xiàng):,,,所以是的充分不必要條件,A錯(cuò)誤;B選項(xiàng):,,所以是的非充分非必要條件,B錯(cuò)誤;C選項(xiàng):,,,所以是必要不充分條件,C正確;D選項(xiàng):,,,所以是的非充分非必要條件,D錯(cuò)誤.故選:C.12、C【解析】利用等差數(shù)列的通項(xiàng)公式即可求解【詳解】設(shè)數(shù)列,,,,是首項(xiàng)為,公差d=-4的等差數(shù)列{},,令,得故選:C二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】首先利用二項(xiàng)展開(kāi)式的通項(xiàng)公式,求,再利用賦值法求系數(shù)的和以及【詳解】展開(kāi)式的通項(xiàng)為,令,則,即,故,令,得.又,所以故故答案為:14、##【解析】曲線圍成圖形關(guān)于軸,軸對(duì)稱(chēng),故只需要求出第一象限的面積即可.【詳解】將或代入方程,方程不發(fā)生改變,故曲線關(guān)于軸,軸對(duì)稱(chēng),因此只需求出第一象限的面積即可.當(dāng),時(shí),曲線可化為:,表示的圖形為一個(gè)半圓,圍成的面積為,故曲線圍成的圖形的面積為.故答案:.15、【解析】由且為非零向量可直接構(gòu)造方程求得,進(jìn)而得到結(jié)果.【詳解】由題意知:,,解得:(舍)或,.故答案為:.16、【解析】可知B對(duì)的邊最大,再用正弦定理計(jì)算即可.【詳解】利用正弦定理可知,B對(duì)的邊最大,因?yàn)?,,所以?故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)預(yù)計(jì)第9周才能完成接種工作【解析】(1)利用最小二乘法原理求解即可;(2)解方程即得解.【小問(wèn)1詳解】解:由表中數(shù)據(jù)得,,,,.所以所以y關(guān)于的線性回歸方程為.【小問(wèn)2詳解】解:令,解得.所以預(yù)計(jì)第9周才能完成接種工作.18、(1)證明見(jiàn)解析;(2)【解析】(1)要證,可證,由題意可得,,易證,從而平面,即有,從而得證;(2)取中點(diǎn),根據(jù)題意可知,兩兩垂直,所以以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,再分別求出向量和平面的一個(gè)法向量,即可根據(jù)線面角的向量公式求出【詳解】(1)中,,,,由余弦定理可得,所以,.由題意且,平面,而平面,所以,又,所以(2)由,,而與相交,所以平面,因?yàn)?,所以,取中點(diǎn),連接,則兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),如圖所示,建立空間直角坐標(biāo)系,則,又為中點(diǎn),所以.由(1)得平面,所以平面的一個(gè)法向量從而直線與平面所成角的正弦值為【點(diǎn)睛】本題第一問(wèn)主要考查線面垂直的相互轉(zhuǎn)化,要證明,可以考慮,題中與有垂直關(guān)系直線較多,易證平面,從而使問(wèn)題得以解決;第二問(wèn)思路直接,由第一問(wèn)的垂直關(guān)系可以建立空間直角坐標(biāo)系,根據(jù)線面角的向量公式即可計(jì)算得出19、(1)單調(diào)遞增區(qū)間是和,單調(diào)遞減是;(2)函數(shù)的最大值是,函數(shù)的最小值是.【解析】(1)利用導(dǎo)數(shù)和函數(shù)單調(diào)性關(guān)系,求函數(shù)的單調(diào)區(qū)間;(2)利用函數(shù)的單調(diào)性,列表求函數(shù)的最值.【小問(wèn)1詳解】,當(dāng),解得:或,所以函數(shù)的單調(diào)遞增區(qū)間是和,當(dāng),解得:,所以函數(shù)的單調(diào)遞減區(qū)間是,所以函數(shù)的單調(diào)遞增區(qū)間是和,單調(diào)遞減是;【小問(wèn)2詳解】由(1)可得下表4單調(diào)遞增單調(diào)遞減單調(diào)遞增所以函數(shù)的最大值是,函數(shù)的最小值是20、(1);(2)存在;或.【解析】(1)設(shè),由,,,求得的值即可得橢圓的方程;(2)設(shè),,直線的方程為與橢圓方程聯(lián)立可得,,進(jìn)而可得弦長(zhǎng),求出點(diǎn)到直線的距離,解方程,求得的值即可求解.【小問(wèn)1詳解】設(shè),因?yàn)橹本€的斜率為,,所以,可得,又因?yàn)?,所以,所以,所以橢圓的方程為【小問(wèn)2詳解】假設(shè)存在直線,使得的面積為,當(dāng)軸時(shí),不合題意,設(shè),,直線的方程為,聯(lián)立消去得:,由可得或,,,所以,點(diǎn)到直線的距離,所以,整理可得:即,所以或,所以或,所以存在直線:或使得的面積為.21、(1)(2)【解析】(1)設(shè)數(shù)列的公差為,由,且,,,利用“”法求解;(2)由,利用裂項(xiàng)相消法求解.【小問(wèn)1詳解】解:,,設(shè)數(shù)列的公差為,則,,,由題知,整理得,解得,(舍去),,則.【小問(wèn)2詳解】,則=.22、(1),;(2).【解析】(1)設(shè)等差數(shù)列的公差,等比數(shù)列
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025項(xiàng)目施工合同模板
- 2025房屋建筑合同模板 房屋建筑合同
- 2025專(zhuān)業(yè)版電子版權(quán)委托代理合同
- 二零二五年度XX房地產(chǎn)公司收取管理費(fèi)合作協(xié)議3篇
- 二零二五年度股權(quán)代持與公司研發(fā)創(chuàng)新合作協(xié)議3篇
- 2025年度農(nóng)機(jī)設(shè)備委托管理與農(nóng)業(yè)人才培養(yǎng)協(xié)議3篇
- 二零二五年度特色農(nóng)產(chǎn)品電商平臺(tái)合作合同范本3篇
- 2025年度養(yǎng)老院老人外出看護(hù)責(zé)任約定協(xié)議3篇
- 2025年度全新二零二五年度離婚后子女心理輔導(dǎo)及關(guān)愛(ài)協(xié)議3篇
- 二零二五年度養(yǎng)殖場(chǎng)品牌授權(quán)與合作承包協(xié)議3篇
- 供應(yīng)鏈年終工作總結(jié)報(bào)告
- 2024年香港中旅國(guó)際投資有限公司招聘筆試參考題庫(kù)含答案解析
- 醬油培訓(xùn)課件
- Zippo-2024年美版年冊(cè)集合
- 重大隱患判定標(biāo)準(zhǔn)培訓(xùn)課件
- 畫(huà)法幾何及機(jī)械制圖課件
- 棋牌游戲自審自查報(bào)告
- 地質(zhì)災(zāi)害風(fēng)險(xiǎn)調(diào)查評(píng)價(jià)項(xiàng)目招標(biāo)文件
- JJF 2088-2023大型蒸汽滅菌器溫度、壓力、時(shí)間參數(shù)校準(zhǔn)規(guī)范
- 幼兒園食堂食品安全主體責(zé)任風(fēng)險(xiǎn)管控清單(日管控)
- 陜西華縣皮影戲調(diào)研報(bào)告
評(píng)論
0/150
提交評(píng)論