唐山市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末考試模擬試題含解析_第1頁(yè)
唐山市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末考試模擬試題含解析_第2頁(yè)
唐山市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末考試模擬試題含解析_第3頁(yè)
唐山市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末考試模擬試題含解析_第4頁(yè)
唐山市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末考試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

唐山市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末考試模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在直三棱柱中,側(cè)面是邊長(zhǎng)為的正方形,,,且,則異面直線與所成的角為()A. B.C. D.2.在空間四邊形中,,,,且,則()A. B.C. D.3.若,在直線l上,則直線l一個(gè)方向向量為()A. B.C. D.4.過點(diǎn)的直線在兩坐標(biāo)軸上的截距之和為零,則該直線方程為()A. B.C.或 D.或5.設(shè)雙曲線的實(shí)軸長(zhǎng)與焦距分別為2,4,則雙曲線C的漸近線方程為()A. B.C. D.6.已知是兩條不同的直線,是兩個(gè)不同的平面,則下列結(jié)論正確的是()A.若,則 B.若,則C.若,則 D.若,則7.橢圓()的右頂點(diǎn)是拋物線的焦點(diǎn),且短軸長(zhǎng)為2,則該橢圓方程為()A. B.C. D.8.已知直線的一個(gè)方向向量為,則直線的傾斜角為()A. B.C. D.9.已知{an}是以10為首項(xiàng),-3為公差的等差數(shù)列,則當(dāng){an}的前n項(xiàng)和Sn,取得最大值時(shí),n=()A.3 B.4C.5 D.610.“”是“函數(shù)在上無極值”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.已知數(shù)列的前n項(xiàng)和為,,,則()A. B.C. D.12.已知雙曲線的左右焦點(diǎn)分別為、,過作的一條漸近線的垂線,垂足為,若的面積為,則的漸近線方程為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線C:y2=2px過點(diǎn)P(1,1):①點(diǎn)P到拋物線焦點(diǎn)的距離為②過點(diǎn)P作過拋物線焦點(diǎn)的直線交拋物線于點(diǎn)Q,則△OPQ的面積為③過點(diǎn)P與拋物線相切的直線方程為x-2y+1=0④過點(diǎn)P作兩條斜率互為相反數(shù)的直線交拋物線于M,N兩點(diǎn),則直線MN的斜率為定值其中正確的是________.14.已知平面的法向量分別為,,若,則的值為___15.已知拋物線的焦點(diǎn)F在直線上,過點(diǎn)F的直線l與拋物線C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),△的面積是△面積的4倍,則直線l的方程為____________16.關(guān)于曲線C:1,有如下結(jié)論:①曲線C關(guān)于原點(diǎn)對(duì)稱;②曲線C關(guān)于直線x±y=0對(duì)稱;③曲線C是封閉圖形,且封閉圖形的面積大于2π;④曲線C不是封閉圖形,且它與圓x2+y2=2無公共點(diǎn);⑤曲線C與曲線D:|x|+|y|=2有4個(gè)公共點(diǎn),這4點(diǎn)構(gòu)成正方形其中正確結(jié)論的個(gè)數(shù)是_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,且其左頂點(diǎn)到右焦點(diǎn)的距離為.(1)求橢圓的方程;(2)設(shè)點(diǎn)、在橢圓上,以線段為直徑的圓過原點(diǎn),試問是否存在定點(diǎn),使得到直線的距離為定值?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說理由.18.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)在上的最大值和最小值.19.(12分)已知拋物線C:(1)若拋物線C上一點(diǎn)P到F的距離是4,求P的坐標(biāo);(2)若不過原點(diǎn)O的直線l與拋物線C交于A、B兩點(diǎn),且,求證:直線l過定點(diǎn)20.(12分)已知函數(shù)f(x)=x3+ax2+2,x=2是f(x)的一個(gè)極值點(diǎn).(1)求實(shí)數(shù)a的值;(2)求f(x)在區(qū)間(-1,4]上的最大值和最小值.21.(12分)已知橢圓C與橢圓有相同的焦點(diǎn),且離心率為.(1)橢圓C的標(biāo)準(zhǔn)方程;(2)若橢圓C的兩個(gè)焦點(diǎn),P是橢圓上的點(diǎn),且,求的面積.22.(10分)某地從今年8月份開始啟動(dòng)12-14歲人群新冠肺炎疫苗的接種工作,共有8千人需要接種疫苗.前4周的累計(jì)接種人數(shù)統(tǒng)計(jì)如下表:前x周1234累計(jì)接種人數(shù)y(千人)2.5344.5(1)求y關(guān)于的線性回歸方程;(2)根據(jù)(1)中所求的回歸方程,預(yù)計(jì)該地第幾周才能完成疫苗接種工作?參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為,

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】分析得出,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得異面直線與所成的角.【詳解】由題意可知,,因?yàn)?,,則,,因?yàn)槠矫妫渣c(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則點(diǎn)、、、,,,,因此,異面直線與所成的角為.故選:C.2、A【解析】利用空間向量的線性運(yùn)算即可求解.【詳解】..故選:A.3、C【解析】利用直線的方向向量的定義直接求解.【詳解】因?yàn)椋谥本€l上,所以直線l的一個(gè)方向向量為.故選:C.4、D【解析】分截距為零和不為零兩種情況討論即可﹒【詳解】當(dāng)直線過原點(diǎn)時(shí),滿足題意,方程為,即2x-y=0;當(dāng)直線不過原點(diǎn)時(shí),設(shè)方程為,∵直線過(1,2),∴,∴,∴方程為,故選:D﹒5、C【解析】由已知可求出,即可得出漸近線方程.【詳解】因?yàn)?,所以,所以的漸近線方程為.故選:C.6、C【解析】由空間中直線與直線、直線與平面、平面與平面的位置關(guān)系,逐一核對(duì)四個(gè)選項(xiàng)得答案【詳解】解:對(duì)于A:若,則或,故A錯(cuò)誤;對(duì)于B:若,則或與相交,故B錯(cuò)誤;對(duì)于C:若,根據(jù)面面垂直的判定定理可得,故C正確;對(duì)于D:若則與平行、相交、或異面,故D錯(cuò)誤;故選:C7、A【解析】求得拋物線的焦點(diǎn)從而求得,再結(jié)合題意求得,即可寫出橢圓方程.【詳解】因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,故可得;又短軸長(zhǎng)為2,故可得,即;故橢圓方程為:.故選:.8、A【解析】由直線斜率與方向向量的關(guān)系算出斜率,然后可得.【詳解】記直線的傾斜角為,由題知,又,所以,即.故選:A9、B【解析】由題可得當(dāng)時(shí),,當(dāng)時(shí),,即得.【詳解】∵{an}是以10為首項(xiàng),-3為公差的等差數(shù)列,∴,故當(dāng)時(shí),,當(dāng)時(shí),,故時(shí),取得最大值故選:B.10、B【解析】根據(jù)極值的概念,可知函數(shù)在上無極值,則方程的,再根據(jù)充分、必要條件判斷,即可得到結(jié)果.【詳解】由題意,可得,若函數(shù)在上無極值,所以對(duì)于方程,,解得.所以“”是“函數(shù)在上無極值”的必要不充分條件.故選:B.11、D【解析】根據(jù)給定遞推公式求出即可計(jì)算作答.【詳解】因數(shù)列的前n項(xiàng)和為,,,則,,,所以.故選:D12、D【解析】求得,根據(jù)的面積列方程,由此求得,進(jìn)而求得雙曲線的漸近線方程.【詳解】依題意,雙曲線的一條漸近線為,則,所以,所以,所以.所以雙曲線漸近線方程為.故選:D【點(diǎn)睛】本小題主要考查雙曲線漸近線的有關(guān)計(jì)算,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、②③④【解析】由拋物線過點(diǎn)可得拋物線的方程,求出焦點(diǎn)的坐標(biāo)及準(zhǔn)線方程,由拋物線的性質(zhì)可判斷①;求出直線的方程與拋物線聯(lián)立切線的坐標(biāo),進(jìn)而求出三角形的面積,判斷②;設(shè)直線方程為y-1=k(x-1),與y2=x聯(lián)立求得斜率,進(jìn)而可得在處的切線方程,從而判斷③;設(shè)直線的方程為拋物線聯(lián)立求出的坐標(biāo),同理求出的坐標(biāo),進(jìn)而求出直線的斜率,從而可判斷④【詳解】解:由拋物線過點(diǎn),所以,所以,所以拋物線的方程為:;可得拋物線的焦點(diǎn)的坐標(biāo)為:,,準(zhǔn)線方程為:,對(duì)于①,由拋物線的性質(zhì)可得到焦點(diǎn)的距離為,故①錯(cuò)誤;對(duì)于②,可得直線的斜率,所以直線的方程為:,代入拋物線的方程可得:,解得,所以,故②正確;對(duì)于③,依題意斜率存在,設(shè)直線方程為y-1=k(x-1),與y2=x聯(lián)立,得:ky2-y+1-k=0,=1-4k(1-k)=0,4k2-4k+1=0,解得k=,所以切線方程為x-2y+1=0,故③正確;對(duì)于④,設(shè)直線的方程為:,與拋物線聯(lián)立可得,所以,所以,代入直線中可得,即,,直線的方程為:,代入拋物線的方程,可得,代入直線的方程可得,所以,,所以為定值,故④正確故答案為:②③④.14、【解析】由平面互相垂直可知其對(duì)應(yīng)的法向量也垂直,然后用空間向量垂直的坐標(biāo)運(yùn)算求解即可.【詳解】∵,∴平面的法向量互相垂直,∴,即,解得,故答案為:.15、【解析】設(shè)A,B分別為,由焦點(diǎn)在已知直線上求F坐標(biāo)及拋物線方程,再根據(jù)題設(shè)三角形的面積關(guān)系可得,并設(shè)直線l為,聯(lián)立拋物線應(yīng)用韋達(dá)定理求參數(shù)m,即可知直線l的方程.【詳解】設(shè)點(diǎn)A,B的坐標(biāo)分別為,直線,令可得,故焦點(diǎn)F的坐標(biāo)為,所以,由,,而△的面積是△面積的4倍,所以,即,設(shè)直線l為,聯(lián)立方程,消去x后整理為,所以,代入,有,可得,則直線l的方程為故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)拋物線焦點(diǎn)位置及其所在直線求拋物線方程,由面積關(guān)系得到交點(diǎn)縱坐標(biāo)的數(shù)量關(guān)系,注意交點(diǎn)在x軸兩側(cè),再設(shè)直線聯(lián)立拋物線求參數(shù)即可.16、4【解析】直接利用曲線的性質(zhì),對(duì)稱性的應(yīng)用可判斷①②;求出可判斷③;聯(lián)立方程,解方程組可判斷④⑤的結(jié)論【詳解】對(duì)于①,將方程中的x換為﹣x,y換為﹣y,方程不變,曲線C關(guān)于原點(diǎn)對(duì)稱,故①正確;對(duì)于②,將方程中的x換為﹣y,把y換成﹣x,方程不變,曲線C關(guān)于直線x±y=0對(duì)稱,故②正確;對(duì)于③,由方程得,故曲線C不是封閉圖形,故③錯(cuò)誤;對(duì)于④,曲線C:,不是封閉圖形,聯(lián)立整理可得:,方程無解,故④正確;對(duì)于⑤,曲線C與曲線D:由于,解得,根據(jù)對(duì)稱性,可得公共點(diǎn)為,故曲線C與曲線D有四個(gè)交點(diǎn),這4點(diǎn)構(gòu)成正方形,故⑤正確故答案為:4三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解析】(1)由題設(shè)可知求出,再結(jié)合,從而可求出橢圓的方程,(2)①若直線與軸垂直,由對(duì)稱性可知,代入橢圓方程可求得結(jié)果,②若直線不與軸垂直,設(shè)直線的方程為,將直線方程與橢圓方程聯(lián)立方程組,消去,然后利用根與系數(shù)的關(guān)系,設(shè),,再由條件,得,從而得,再利用點(diǎn)到直線的距離公式可求得結(jié)果【詳解】(1)由題設(shè)可知解得,,,所以橢圓的方程為:;(2)設(shè),,①若直線與軸垂直,由對(duì)稱性可知,將點(diǎn)代入橢圓方程,解得,原點(diǎn)到該直線的距離;②若直線不與軸垂直,設(shè)直線的方程為,由消去得,則由條件,即,由韋達(dá)定理得,整理得,則原點(diǎn)到該直線的距離;故存在定點(diǎn),使得到直線的距離為定值.18、(1)單調(diào)增區(qū)間,單調(diào)減區(qū)間(2)最大值,最小值【解析】根據(jù)導(dǎo)函數(shù)分析函數(shù)單調(diào)性,在閉區(qū)間內(nèi)的最值【小問1詳解】時(shí),;時(shí),單調(diào)增區(qū)間,單調(diào)減區(qū)間【小問2詳解】由(1)可知,在上單調(diào)遞增,在上單調(diào)遞減,所以最大值為又;故最小值為019、(1)(2)見解析【解析】(1)由拋物線的定義,可得點(diǎn)的坐標(biāo);(2)可設(shè)直線的方程為,,,,與拋物線聯(lián)立,消,利用韋達(dá)定理求得,,再根據(jù),可得,從而可求得參數(shù)的關(guān)系,即可得出結(jié)論.【小問1詳解】解:設(shè),,由拋物線的定義可知,即,解得,將代入方程,得,即的坐標(biāo)為;【小問2詳解】證明:由題意知直線不能與軸平行,可設(shè)直線的方程為,與拋物線聯(lián)立得,消去得,設(shè),,,則,,由,可得,即,即,即,又,解得,所以直線方程為,當(dāng)時(shí),,所以直線過定點(diǎn)20、(1);(2)最大值為18,最小值為.【解析】(1)解方程即得解;(2)利用導(dǎo)數(shù)求出函數(shù)的單調(diào)區(qū)間分析即得解.【小問1詳解】解:因?yàn)?,所以,因?yàn)樵谔幱袠O值,所以,即,所以.經(jīng)檢驗(yàn),當(dāng)時(shí),符合題意.所以.【小問2詳解】解:由(1)可知,所以,令,得,當(dāng)時(shí),由得,;由得,或.所以函數(shù)在上遞增,在上遞減,在上遞增,又.所以的最小值為,又,所以的最大值為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論