版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省駐馬店市新蔡縣2025屆高一上數(shù)學(xué)期末統(tǒng)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)(,且)的圖象恒過點P,若角的終邊經(jīng)過點P,則()A. B.C. D.2.給定函數(shù):①;②;③;④,其中在區(qū)間上單調(diào)遞減函數(shù)序號是()A.①② B.②③C.③④ D.①④3.若函數(shù)是函數(shù)(且)的反函數(shù),且,則()A. B.C. D.4.設(shè)函數(shù)滿足,當時,,則()A.0 B.C. D.15.如圖,以為直徑在正方形內(nèi)部作半圓,為半圓上與不重合的一動點,下面關(guān)于的說法正確的是A.無最大值,但有最小值B.既有最大值,又有最小值C.有最大值,但無最小值D.既無最大值,又無最小值6.已知一組數(shù)據(jù)為20,30,40,50,50,50,70,80,其平均數(shù)、第60百分位數(shù)和眾數(shù)的大小關(guān)系是()A.平均數(shù)=第60百分位數(shù)>眾數(shù) B.平均數(shù)<第60百分位數(shù)=眾數(shù)C.第60百分位數(shù)=眾數(shù)<平均數(shù) D.平均數(shù)=第60百分位數(shù)=眾數(shù)7.在平行四邊形ABCD中,E為AB中點,BD交CE于F,則=()A. B.C. D.8.定義在R上的偶函數(shù)滿足:對任意的,有,且,則不等式的解集是()A. B.C. D.9.若直線l1∥l2,且l1的傾斜角為45°,l2過點(4,6),則l2還過下列各點中的A.(1,8) B.(-2,0)C.(9,2) D.(0,-8)10.將長方體截去一個四棱錐,得到的幾何體如右圖所示,則該幾何體的左視圖為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知滿足任意都有成立,那么的取值范圍是___________.12.正實數(shù)a,b,c滿足a+2-a=2,b+3b=3,c+=4,則實數(shù)a,b,c之間的大小關(guān)系為_________.13.函數(shù)f(x)是定義在R上的偶函數(shù),f(x-1)是奇函數(shù),且當時,,則________14.若直線:與直線:互相垂直,則實數(shù)的值為__________15.已知函數(shù)是定義在上的奇函數(shù),當時,,則當時____16.已知函數(shù)=___________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)f(x)=2sin(2x+)(x∈R)(1)求f(x)的最小正周期:(2)求不等式成立的x的取值集合.(3)求x∈的最大值和最小值.18.計算:(1)(2)(3)19.已知定義在R上的函數(shù)滿足:①對任意實數(shù),,均有;②;③對任意,(1)求的值,并判斷的奇偶性;(2)對任意的x∈R,證明:;(3)直接寫出的所有零點(不需要證明)20.如圖,三棱柱中,,,,為的中點,且.(1)求證:平面;(2)求與平面所成角的大小.21.某工廠利用輻射對食品進行滅菌消毒,先準備在該廠附近建一職工宿舍,并對宿舍進行防輻射處理,防輻射材料的選用與宿舍到工廠距離有關(guān).若建造宿舍的所有費用p(萬元)和宿舍與工廠的距離x(km)的關(guān)系式為p=k4x+5(0≤x≤15),若距離為10km時,測算宿舍建造費用為20萬元.為了交通方便,工廠與宿舍之間還要修一條道路,已知購置修路設(shè)備需10萬元,鋪設(shè)路面每千米成本為4萬元.設(shè)(1)求fx(2)宿舍應(yīng)建在離工廠多遠處,可使總費用最小,并求fx
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由題可得點,再利用三角函數(shù)的定義即求.【詳解】令,則,所以函數(shù)(,且)的圖象恒過點,又角的終邊經(jīng)過點,所以,故選:A.2、B【解析】①,為冪函數(shù),且的指數(shù),在上為增函數(shù);②,,為對數(shù)型函數(shù),且底數(shù),在上為減函數(shù);③,在上為減函數(shù),④為指數(shù)型函數(shù),底數(shù)在上為增函數(shù),可得解.【詳解】①,為冪函數(shù),且的指數(shù),在上為增函數(shù),故①不可選;②,,為對數(shù)型函數(shù),且底數(shù),在上為減函數(shù),故②可選;③,在上為減函數(shù),在上為增函數(shù),故③可選;④為指數(shù)型函數(shù),底數(shù)在上為增函數(shù),故④不可選;綜上所述,可選的序號為②③,故選B.【點睛】本題考查基本初等函數(shù)的單調(diào)性,熟悉基本初等函數(shù)的解析式、圖像和性質(zhì)是解決此類問題的關(guān)鍵,屬于基礎(chǔ)題.3、B【解析】由題意可得出,結(jié)合可得出的值,進而可求得函數(shù)的解析式.【詳解】由于函數(shù)是函數(shù)(且)的反函數(shù),則,則,解得,因此,.故選:B.4、A【解析】根據(jù)給定條件依次計算并借助特殊角的三角函數(shù)值求解作答.【詳解】因函數(shù)滿足,且當時,,則,所以.故選:A5、D【解析】設(shè)正方形的邊長為2,如圖建立平面直角坐標系,則D(-1,2),P(cosθ,sinθ),(其中0<θ<π),∵cosθ∈(-1,1),∴∈(4,16).故選D.點睛:本題考查了向量的加法及向量模的計算,利用建系的方法,引入三角函數(shù)來解決使得思路清晰,計算簡便,遇見正方形,圓,等邊三角形,直角三角形等特殊圖形常用建系的方法.6、B【解析】從數(shù)據(jù)為20,30,40,50,50,50,70,80中計算出平均數(shù)、第60百分位數(shù)和眾數(shù),進行比較即可.【詳解】解:平均數(shù)為,,第5個數(shù)50即為第60百分位數(shù).又眾數(shù)為50,它們的大小關(guān)系是平均數(shù)第60百分位數(shù)眾數(shù).故選:B.7、A【解析】利用向量加法法則把轉(zhuǎn)化為,再利用數(shù)量關(guān)系把化為,從而可表示結(jié)果.【詳解】解:如圖,∵平行四邊形ABCD中,E為AB中點,∴,∴DF,∴,故選A【點睛】此題考查了向量加減法則,平面向量基本定理,難度不大8、C【解析】依題意可得在上單調(diào)遞減,根據(jù)偶函數(shù)的性質(zhì)可得在上單調(diào)遞增,再根據(jù),即可得到的大致圖像,結(jié)合圖像分類討論,即可求出不等式的解集;【詳解】解:因為函數(shù)滿足對任意的,有,即在上單調(diào)遞減,又是定義在R上的偶函數(shù),所以在上單調(diào)遞增,又,所以,函數(shù)的大致圖像可如下所示:所以當時,當或時,則不等式等價于或,解得或,即原不等式的解集為;故選:C9、B【解析】由題意求出得方程,將四個選項逐一代入,即可驗證得到答案.【詳解】由題直線l1∥l2,且l1的傾斜角為45°,則的傾斜角為45,斜率由點斜式可得的方程為即四個選項中只有B滿足方程.即l2還過點(-2,0).故選B【點睛】本題考查直線方程的求法,屬基礎(chǔ)題.10、D【解析】答案:D左視圖即是從正左方看,找特殊位置的可視點,連起來就可以得到答案二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題意可知,分段函數(shù)在上單調(diào)遞減,因此分段函數(shù)的每一段都是單調(diào)遞減,且左邊一段的最小值不小于右邊的最大值,即可得到實數(shù)的取值范圍.【詳解】由任意都有成立,可知函數(shù)在上單調(diào)遞減,又因,所以,解得.故答案為:.12、##【解析】利用指數(shù)的性質(zhì)及已知條件求a、b的范圍,討論c的取值范圍,結(jié)合對數(shù)的性質(zhì)求c的范圍【詳解】由,由,又,當時,,顯然不成立;當時,,不成立;當時,;綜上,.故答案為:13、1【解析】由函數(shù)f(x)是定義在R上的偶函數(shù)及f(x-1)是奇函數(shù)得到函數(shù)的周期,進而根據(jù)函數(shù)的性質(zhì)求得答案.【詳解】根據(jù)題意,函數(shù)f(x)是定義在R上的偶函數(shù),則有f(-x)=f(x),又f(x-1)是奇函數(shù),則f(-x-1)=-f(x-1),所以f(x+2)=f[-(x+2)]=f[-(x+1)-1]=-f[(x+1)-1]=-f(x),即f(x+2)=-f(x),則有f(x+4)=-f(x+2)=f(x),所以函數(shù)f(x)是周期為4的周期函數(shù),則,,故故答案為:1.14、-2【解析】由于兩條直線垂直,故.15、【解析】設(shè)則得到,再利用奇函數(shù)的性質(zhì)得到答案.【詳解】設(shè)則,函數(shù)是定義在上的奇函數(shù)故答案為【點睛】本題考查了利用函數(shù)的奇偶性計算函數(shù)表達式,屬于常考題型.16、2【解析】,所以點睛:本題考查函數(shù)對稱性的應(yīng)用.由題目問題可以猜想為定值,所以只需代入計算,得.函數(shù)對稱性的問題要大膽猜想,小心求證三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)最大值為2,最小值-1【解析】(1)利用正弦函數(shù)的周期即可求得;(2)先求出的解析式,再根據(jù)正弦函數(shù)的圖像性質(zhì)求解不等式;(3)根據(jù)x∈,求得,再根據(jù)正弦函數(shù)的圖像性質(zhì)可得函數(shù)f(x)在的最大值和最小值.【小問1詳解】,∴f(x)的最小正周期為;【小問2詳解】∵∴∴∴不等式成立的的取值集合為【小問3詳解】∵,∴,∴,-∴﹣1≤≤2∴當,即時,f(x)的最小值為﹣1;當,即時,f(x)的最大值為2.18、(1)2(2)2(3)【解析】(1)直接利用對數(shù)的運算法則計算得到答案.(2)直接利用指數(shù)冪的運算法則計算得到答案.(3)根據(jù)誘導(dǎo)公式化簡計算得到答案.【小問1詳解】【小問2詳解】【小問3詳解】.19、(1)=2,f(x)為偶函數(shù);(2)證明見解析;(3),.【解析】(1)令x=y(tǒng)=0可求f(0);令x=y(tǒng)=1可求f(2);令x=0可求奇偶性;(2)令y=1即可證明;(3)(1),是以4為周期的周期函數(shù),由偶函數(shù)的性質(zhì)可得,從而可得的所有零點【小問1詳解】∵對任意實數(shù),,均有,∴令,則,可得,∵對任意,,,∴f(0)>0,∴;令,則;∴;∵f(x)定義域為R關(guān)于原點對稱,且令時,,∴是R上的偶函數(shù);【小問2詳解】令,則,則,∴,即;【小問3詳解】(1),且是以4為周期的周期的偶函數(shù),由偶函數(shù)的性質(zhì)可得,從而可得f(-1)=(1)=f(3)=f(5)=…=0,故f(x)的零點為奇數(shù),即f(x)所有零點為,.20、(1)證明見解析(2)【解析】(1)連結(jié)與交于點,連結(jié),由中位線定理可得,再根據(jù)線面平行的判定定理即可證明結(jié)果;(2)方法一:根據(jù)線面垂直的判定定理,可證明平面;取的中點,易證平面,所以即所求角,再根據(jù)直棱柱的有關(guān)性質(zhì)求即可得到結(jié)果;方法二:根據(jù)線面垂直的判定定理,可證明平面;取的中點,易證平面;所以即與平面所成的角,再根據(jù)直棱柱的有關(guān)性質(zhì)求即可得到結(jié)果.【小問1詳解】證明:如圖一,連結(jié)與交于點,連結(jié).在中,、為中點,∴.又平面,平面,∴平面.圖一【小問2詳解】證明:(方法一)如圖二,圖二∵,為的中點,∴.又,,∴平面.取的中點,又為的中點,∴、、平行且相等,∴四邊形是平行四邊形,∴與平行且相等.又平面,∴平面,∴即所求角.由前面證明知平面,∴,又,,∴平面,∴此三棱柱為直棱柱.設(shè)∴,,,.(方法二)如圖三,圖三∵,為的中點,∴.又,,∴平面.取的中點,則,∴平面.∴即與平面所成的角.由前面證明知平面,∴,又,,∴平面,∴此三棱柱為直棱柱.設(shè),∴,,∴.21、(1)fx=9004x+5【解析】(1)根據(jù)距離為10km時,測算宿舍建造費用為20萬元,可求k的值,由此,可得f(x)的表達式;(2)fx【詳解】解:(1)由題意可知,距離為10km時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 算法分析課程設(shè)計 查賬
- 房地產(chǎn)開盤策劃方案
- 礦山機械加工精度分析與改進考核試卷
- 布藝玩具制作技巧考核試卷
- 人事行政原則與實踐培訓(xùn)考核試卷
- 醫(yī)療器械在耳鼻喉科治療中的應(yīng)用考核試卷
- 微型貨車課程設(shè)計
- 2024年汽車空氣懸掛配件銷售合同范本3篇
- 照明定時電路課程設(shè)計
- 甜品制作視頻課程設(shè)計
- 屋面細石混凝土保護層施工方案及方法
- 2018-2019學(xué)年北京市西城區(qū)人教版六年級上冊期末測試數(shù)學(xué)試卷
- SFC15(發(fā)送)和SFC14(接收)組態(tài)步驟
- 旅行社公司章程53410
- 小學(xué)班主任工作總結(jié)PPT
- 起世經(jīng)白話解-
- 螺桿式制冷壓縮機操作規(guī)程完整
- 頜下腺囊腫摘除手術(shù)
- 五金件成品檢驗報告
- CDN基礎(chǔ)介紹PPT課件
- SPC八大控制圖自動生成器v1.01
評論
0/150
提交評論