2025屆云南省通海三中數(shù)學高二上期末教學質量檢測模擬試題含解析_第1頁
2025屆云南省通海三中數(shù)學高二上期末教學質量檢測模擬試題含解析_第2頁
2025屆云南省通海三中數(shù)學高二上期末教學質量檢測模擬試題含解析_第3頁
2025屆云南省通海三中數(shù)學高二上期末教學質量檢測模擬試題含解析_第4頁
2025屆云南省通海三中數(shù)學高二上期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆云南省通海三中數(shù)學高二上期末教學質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,且與互相垂直,則k=()A. B.C. D.2.設是雙曲線的一個焦點,,是的兩個頂點,上存在一點,使得與以為直徑的圓相切于,且是線段的中點,則的漸近線方程為A. B.C. D.3.已知,,,則點C到直線AB的距離為()A.3 B.C. D.4.如圖,過拋物線的焦點的直線與拋物線交于兩點,與其準線交于點(點位于之間)且于點且,則等于()A. B.C. D.5.已知函數(shù),則的值為()A. B.C. D.6.設太陽光線垂直于平面,在陽光下任意轉動棱長為一個單位的立方體,則它在平面上的投影面積的最大值是()A.1 B.C. D.7.已知數(shù)列的前項和為,滿足,,,則()A. B.C.,,成等差數(shù)列 D.,,成等比數(shù)列8.已知等邊三角形的一個頂點在橢圓E上,另兩個頂點位于E的兩個焦點處,則E的離心率為()A. B.C. D.9.已知等差數(shù)列中,、是的兩根,則()A B.C. D.10.設是定義在R上的可導函數(shù),若(為常數(shù)),則()A. B.C. D.11.已知函數(shù),在上隨機任取一個數(shù),則的概率為()A. B.C. D.12.命題p:存在一個實數(shù)﹐它的絕對值不是正數(shù).則下列結論正確的是()A.:任意實數(shù),它的絕對值是正數(shù),為假命題B.:任意實數(shù),它的絕對值不是正數(shù),為假命題C.:存在一個實數(shù),它的絕對值是正數(shù),為真命題D.:存在一個實數(shù),它的絕對值是負數(shù),為真命題二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個共同的焦點F,兩曲線的一個交點為P,若|FP|=5,則點F到雙曲線的漸近線的距離為_____.14.已知向量,,并且、共線且方向相同,則______.15.已知直線與雙曲線無公共點,則雙曲線離心率的取值范圍是____16.將全體正整數(shù)排成一個三角形數(shù)陣(如圖):按照以上排列的規(guī)律,第9行從左向右的第2個數(shù)為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點F為拋物線的焦點,點在拋物線上,且.(1)求該拋物線的方程;(2)若點A在第一象限,且拋物線在點A處的切線交y軸于點M,求的面積.18.(12分)已知圓(1)若一直線被圓C所截得的弦的中點為,求該直線的方程;(2)設直線與圓C交于A,B兩點,把的面積S表示為m的函數(shù),并求S的最大值19.(12分)某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為(1)求頻率分布直方圖中的值;(2)估計該企業(yè)的職工對該部門評分不低于80的概率;(3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.20.(12分)如圖,在四棱錐中,底面ABCD是矩形,M是PA的中點,N是BC的中點,平面ABCD,且,(1)求證:∥平面PCD;(2)求平面MBC與平面ABCD夾角的余弦值21.(12分)一個長方體的平面展開圖及該長方體的直觀圖的示意圖如圖所示(1)請將字母F,G,H標記在長方體相應的頂點處(不需說明理由):(2)若且有下面兩個條件:①;②,請選擇其中一個條件,使得DF⊥平面,并證明你的結論22.(10分)在①成等差數(shù)列;②成等比數(shù)列;③這三個條件中任選一個,補充在下面的問題中,并對其求解.問題:已知為數(shù)列的前項和,,且___________.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和.注:如果選擇多個條件分別解答,按第一個解答計分.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用垂直的坐標表示列方程求解即可.【詳解】由與互相垂直得,解得故選:C.2、C【解析】根據(jù)圖形的幾何特性轉化成雙曲線的之間的關系求解.【詳解】設另一焦點為,連接,由于是圓的切線,則,且,又是的中點,則是的中位線,則,且,由雙曲線定義可知,由勾股定理知,,,即,漸近線方程為,所以漸近線方程為故選C.【點睛】本題考查雙曲線的簡單的幾何性質,屬于中檔題.3、D【解析】應用空間向量的坐標運算求在上投影長及的模長,再應用勾股定理求點C到直線AB的距離.【詳解】因為,,所以設點C到直線AB的距離為d,則故選:D4、B【解析】由題可得,然后結合條件可得,即求.【詳解】設于點,準線交軸于點G,則,又,∴,又于點且,∴BE∥AD,∴,即,∴,∴等于.故選:B.5、C【解析】利用導數(shù)公式及運算法則求得,再求解【詳解】因為,所以,所以故選:C6、C【解析】確定正方體投影面積最大時,是投影面與平面AB'C平行,從而求出投影面積的最大值.【詳解】設正方體投影最大時,是投影面與平面AB'C平行,三個面的投影為兩個全等的菱形,其對角線為,即投影面上三條對角線構成邊長為的等邊三角形,如圖所示,所以投影面積為故選:C7、C【解析】寫出數(shù)列前幾項,觀察規(guī)律,找到數(shù)列變化的周期,再依次去判斷各項的說法即可解決.【詳解】數(shù)列中,,,,則此數(shù)列為1,2,2,1,,,1,2,2,1,,,1,2,2,1,,,…即數(shù)列的各項是周期為6數(shù)值循環(huán)重復的一列數(shù),選項A:,,則.判斷錯誤;選項B:由,可知當時,.判斷錯誤;選項C:,則,即,,成等差數(shù)列.判斷正確;選項D:,,則,,即,,不能構成等比數(shù)列.判斷錯誤.故選:C8、B【解析】根據(jù)已知條件求得的關系式,從而求得橢圓的離心率.【詳解】依題意可知,所以.故選:B9、B【解析】利用韋達定理結合等差中項的性質可求得的值,再結合等差中項的性質可求得結果.【詳解】對于方程,,由韋達定理可得,故,則,所以,.故選:B.10、C【解析】根據(jù)導數(shù)的定義即可求解.【詳解】.故選:C.11、A【解析】先解不等式,然后由區(qū)間長度比可得.【詳解】解不等式,得,所以,即的概率為.故選:A12、A【解析】根據(jù)存在量詞命題的否定為全稱量詞命題判斷,再利用特殊值判斷命題的真假;【詳解】解:因為命題p“存在一個實數(shù)﹐它的絕對值不是正數(shù)”為存在量詞命題,其否定為“任意實數(shù),它的絕對值是正數(shù)”,因為,所以為假命題;故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設點為,由拋物線定義知,,求出點P坐標代入雙曲線方程得到的關系式,求出雙曲線的漸近線方程,利用點到直線的距離公式求解即可.【詳解】由題意得F(2,0),因為點P在拋物線y2=8x上,|FP|=5,設點為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因為a2+b2=4,解得a=1,b=,因為雙曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點到直線的距離公式可得,點F到雙曲線的漸近線的距離.故答案為:【點睛】本題考查雙曲線和拋物線方程及其幾何性質;考查運算求解能力和知識遷移能力;靈活運用雙曲線和拋物線的性質是求解本題的關鍵;屬于中檔題、??碱}型.14、4【解析】根據(jù)空間向量共線基本定理,可設.由坐標運算求得的值,進而求得.即可求得的值.【詳解】根據(jù)空間向量共線基本定理,可設由向量的坐標運算可得解方程可得所以.故答案為:【點睛】本題考查了空間向量共線基本定理的應用,根據(jù)向量的共線定理求參數(shù),屬于基礎題.15、【解析】聯(lián)立直線得,由無公共點得,進而得,即可求出離心率的取值范圍.【詳解】聯(lián)立直線與雙曲線可得,整理得,顯然,由方程無解可得,即,則,,又離心率大于1,故離心率的取值范圍是.故答案為:.16、38【解析】根據(jù)數(shù)陣的規(guī)律求得正確答案.【詳解】數(shù)陣第行有個數(shù),第行有個數(shù),并且數(shù)字從開始,每次遞增.前行共有個數(shù),第行從左向右的最后一個數(shù)是,所以第行從左向右的第個數(shù)為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)10.【解析】(1)由根據(jù)拋物線的定義求出可得拋物線方程;(2)求出拋物線過點A的切線,得出點M的坐標即可求三角形面積.【小問1詳解】由拋物線的定義可知,即,拋物線的方程為.【小問2詳解】,且A在第一象限,,即A(4,4),顯然切線的斜率存在,故可設其方程為,由,消去得,即,令,解得,切線方程為.令x=0,得,即,又,,.18、(1)(2),最大值為.【解析】(1)利用垂徑定理求出斜率,即可求出直線的方程;(2)利用幾何法表示出弦長與d的關系,利用基本不等式求出的面積S的最大值【小問1詳解】圓化為標準方程為:.則.設所求的直線為m.由圓的幾何性質可知:,所以,所以所求的直線為:,即.【小問2詳解】設圓心C到直線l的距離為d,則,且,所以因為直線與圓C交于A,B兩點,所以,解得:且.而的面積:因為所以(其中時等號成立).所以S的最大值為.19、(1)0.006;(2);(3).【解析】(1)在頻率分布直方圖中,由頻率總和即所有矩形面積之和為,可求;(2)在頻率分布直方圖中先求出50名受訪職工評分不低于80的頻率為,由頻率與概率關系可得該部門評分不低于80的概率的估計值為;(3)受訪職工評分在[50,60)的有3人,記為,受訪職工評分在[40,50)的有2人,記為,列出從這5人中選出兩人所有基本事件,即可求相應的概率.【詳解】(1)因為,所以(2)由所給頻率分布直方圖知,50名受訪職工評分不低于80的頻率為,所以該企業(yè)職工對該部門評分不低于80的概率的估計值為(3)受訪職工評分在[50,60)的有:50×0.006×10=3(人),即為;受訪職工評分在[40,50)的有:50×0.004×10=2(人),即為.從這5名受訪職工中隨機抽取2人,所有可能的結果共有10種,它們是又因為所抽取2人的評分都在[40,50)的結果有1種,即,故所求的概率為【點睛】本題考查頻率分布直方圖、概率與頻率關系、古典概型,屬中檔題;利用頻率分布直方圖解題的時,注意其表達的意義,同時要理解頻率是概率的估計值這一基礎知識;在利用古典概型解題時,要注意列出所有的基本事件,千萬不可出現(xiàn)重、漏的情況.20、(1)詳見解析;(2)【解析】(1)取PD的中點E,連接ME,CE,易證四邊形是平行四邊形,得到,再利用線面平行的判定定理證明;(2)建立空間直角坐標系,求得平面MBC的一個法向量,易知平面ABCD的一個法向量為:,由求解.【小問1詳解】證明:如圖所示:取PD的中點E,連接ME,CE,因為底面ABCD是矩形,M是PA的中點,N是BC的中點,所以,所以四邊形是平行四邊形,所以,又平面PCD,平面PCD,所以∥平面PCD;【小問2詳解】建立如圖所示空間直角坐標系:則,所以,設平面MBC的一個法向量為,則,即,令,得,易知平面ABCD的一個法向量為:,所以,所以平面MBC與平面ABCD的夾角的余弦值為.21、(1)答案見解析(2)答案見解析【解析】(1)由展開圖及直觀圖直接觀察可得;(2)選擇②,根據(jù)線面垂直的判定定理即可證明DF⊥平面.【小問1詳解】如圖,【小問2詳解】若選擇①,若此時有平面,則由平面可得,而平面,而平面,故,因為,則平面,由平面可得,故此時矩形為正方形,,矛盾.選擇條件②,使得平面,下面證明如圖,連接,在長方體中,平面,而平面,故,而,故矩形為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論