版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆安徽省阜陽市太和第一中學(xué)數(shù)學(xué)高二上期末監(jiān)測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,為橢圓的左、右焦點,P為橢圓上一點,若,則P點的橫坐標(biāo)為()A. B.C.4 D.92.?dāng)?shù)列,,,,…的一個通項公式為()A. B.C. D.3.通過隨機詢問110名不同的大學(xué)生是否愛好某項運動,得到如下的列聯(lián)表:男女總計愛好402060不愛好203050總計6050110由附表:0.0500.0100.0013.8416.63510.828參照附表,得到的正確結(jié)論是()A.有99%以上的把握認(rèn)為“愛好該項運動與性別有關(guān)”B.有99%以上的把握認(rèn)為“愛好該項運動與性別無關(guān)”C.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項運動與性別有關(guān)”D.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項運動與性別無關(guān)”4.命題“,”的否定是A., B.,C., D.,5.已知圓:,點,則點到圓上點的最小距離為()A.1 B.2C. D.6.記為等差數(shù)列的前n項和,有下列四個等式,甲:;乙:;丙:;丁:.如果只有一個等式不成立,則該等式為()A.甲 B.乙C.丙 D.丁7.與的等差中項是()A. B.C. D.8.如圖,過拋物線的焦點的直線交拋物線于點,,交其準(zhǔn)線于點,準(zhǔn)線與對稱軸交于點,若,且,則此拋物線的方程為()A. B.C. D.9.已知兩個向量,若,則的值為()A. B.C.2 D.810.已知圓M的圓心在直線上,且點,在M上,則M的方程為()A. B.C. D.11.學(xué)校為了解學(xué)生在課外讀物方面的支出情況,抽取了n位同學(xué)進(jìn)行調(diào)查,結(jié)果顯示這些同學(xué)的支出都在(單位:元)內(nèi),其中支出在(單位:元)內(nèi)的同學(xué)有67人,其頻率分布直方圖如圖所示,則n的值為()A.100 B.120C.130 D.39012.三棱柱中,,,,若,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的準(zhǔn)線方程為,則________14.設(shè)函數(shù)f(x)在R上滿足f(x)+xf′(x)>0,若a=(30.3)f(30.3),b=(logπ3)·f(logπ3),則a與b的大小關(guān)系為________15.已知,,,若,則______.16.如圖,一個酒杯的內(nèi)壁的軸截面是拋物線的一部分,杯口寬cm,杯深8cm,稱為拋物線酒杯.①在杯口放一個表面積為的玻璃球,則球面上的點到杯底的最小距離為______cm;②在杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,則玻璃球的半徑的取值范圍為______(單位:cm)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,底面ABCD是梯形,其中,且.(1)求四棱錐S-ABCD的側(cè)面積;(2)求平面SCD與平面SAB的夾角的余弦值.18.(12分)如圖甲是由正方形,等邊和等邊組成的一個平面圖形,其中,將其沿,,折起得三棱錐,如圖乙.(1)求證:平面平面;(2)過棱作平面交棱于點,且三棱錐和的體積比為,求直線與平面所成角的正弦值.19.(12分)(1)求焦點在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程;(2)求經(jīng)過點的拋物線的標(biāo)準(zhǔn)方程;20.(12分)(1)已知:函數(shù)有零點;:所有的非負(fù)整數(shù)都是自然數(shù).若為假,求實數(shù)的取值范圍;(2)已知:;:.若是的必要不充分條件,求實數(shù)的取值范圍.21.(12分)已知圓:,直線:.圓與圓關(guān)于直線對稱(1)求圓的方程;(2)點是圓上的動點,過點作圓的切線,切點分別為、.求四邊形面積的取值范圍22.(10分)已知等比數(shù)列滿足,.(Ⅰ)求的通項公式;(Ⅱ)若,設(shè)(),記數(shù)列的前n項和為,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設(shè),,根據(jù)向量的數(shù)量積得到,與橢圓方程聯(lián)立,即可得到答案;【詳解】設(shè),,,與橢圓聯(lián)立,解得:,故選:B2、B【解析】根據(jù)給定數(shù)列,結(jié)合選項提供通項公式,將n代入驗證法判斷是否為通項公式.【詳解】A:時,排除;B:數(shù)列,,,,…滿足.C:時,排除;D:時,排除;故選:B3、A【解析】由,而,故由獨立性檢驗的意義可知選A4、C【解析】特稱命題的否定是全稱命題,改量詞,且否定結(jié)論,故命題的否定是“”.本題選擇C選項.5、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結(jié)合圓外一點到圓上點的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點到圓上點的最小距離為.故選:C.6、D【解析】分別假設(shè)甲、乙、丙、丁不成立,驗證得到答案【詳解】設(shè)數(shù)列的公差為,若甲不成立,則,由①,③可得,此時與②矛盾;A錯,若乙不成立,則,由①,③可得,此時;與②矛盾;B錯,若丙不成立,則,由①,③可得,此時;與②矛盾;C錯,若丁不成立,則,由①,③可得,此時;,D對,故選:D.7、A【解析】代入等差中項公式即可解決.【詳解】與的等差中項是故選:A8、B【解析】根據(jù)拋物線定義,結(jié)合三角形相似以及已知條件,求得,則問題得解.【詳解】根據(jù)題意,過作垂直于準(zhǔn)線,垂足為,過作垂直于準(zhǔn)線,垂足為,如下所示:因為,又//,,則,故可得,又△△,則,即,解得,故拋物線方程為:.故選:.9、B【解析】直接利用空間向量垂直的坐標(biāo)運算計算即可.【詳解】因為,所以,即,解得.故選:B10、C【解析】由題設(shè)寫出的中垂線,求其與的交點即得圓心坐標(biāo),再應(yīng)用兩點距離公式求半徑,即可得圓的方程.【詳解】因為點,在M上,所以圓心在的中垂線上由,解得,即圓心為,則半徑,所以M的方程為故選:C11、A【解析】根據(jù)小矩形的面積之和,算出位于10~30的2組數(shù)的頻率之和為0.33,從而得到位于30~50的數(shù)據(jù)的頻率之和為1-0.33=0.67,再由頻率計算公式即可算出樣本容量的值.【詳解】位于10~20、20~30的小矩形的面積分別為位于10~20、20~30的據(jù)的頻率分別為0.1、0.23可得位于10~30的前3組數(shù)的頻率之和為0.1+0.23=0.33由此可得位于30~50數(shù)據(jù)的頻率之和為1-0.33=0.67∵支出在[30,50)的同學(xué)有67人,即位于30~50的頻數(shù)為67,∴根據(jù)頻率計算公式,可得解之得.故選:A12、A【解析】利用空間向量線性運算及基本定理結(jié)合圖形即可得出答案.【詳解】解:由,,,若,得.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由準(zhǔn)線方程的表達(dá)式構(gòu)建方程,求得答案.【詳解】因為準(zhǔn)線方程為,所以故答案為:4【點睛】本題考查拋物線中準(zhǔn)線的方程表示,屬于基礎(chǔ)題.14、a>b【解析】構(gòu)造函數(shù)F(x)=xf(x),利用F(x)的單調(diào)性求解即可.【詳解】設(shè)函數(shù)F(x)=xf(x),∴F′(x)=f(x)+xf′(x)>0,∴F(x)=xf(x)在R上為增函數(shù),又∵30.3>1,logπ3<1,∴30.3>logπ3,∴F(30.3)>F(logπ3),∴(30.3)f(30.3)>(logπ3)f(logπ3),∴a>b.故答案為:a>b.15、【解析】根據(jù)題意,由向量坐標(biāo)表示,列出方程,求出,,即可得出結(jié)果.【詳解】因為,,,若,則,解得,所以.故答案為:.【點睛】本題主要考查由向量坐標(biāo)表示求參數(shù),屬于基礎(chǔ)題型.16、①.②.【解析】根據(jù)題意,,進(jìn)而得,,故最小距離為;進(jìn)而建立坐標(biāo)系,得拋物線方程為,當(dāng)杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,此時設(shè)玻璃球軸截面所在圓的方程為,進(jìn)而只需滿足拋物線上的點到圓心的距離大于等于半徑恒成立,再根據(jù)幾何關(guān)系求解即可.【詳解】因為杯口放一個表面積為的玻璃球,所以球的半徑為,又因為杯口寬cm,所以如圖1所示,有,所以,所以,所以,又因為杯深8cm,即故最小距離為如圖1所示,建立直角坐標(biāo)系,易知,設(shè)拋物線的方程為,所以將代入得,故拋物線方程為,當(dāng)杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,如圖2,設(shè)玻璃球軸截面所在圓的方程為,依題意,需滿足拋物線上的點到圓心的距離大于等于半徑恒成立,即,則有恒成立,解得,可得.所以玻璃球的半徑的取值范圍為.故答案為:;【點睛】本題考查拋物線的應(yīng)用,考查數(shù)學(xué)建模能力,運算求解能力,是中檔題.本題第二問解題的關(guān)鍵在于設(shè)出球觸及酒杯底部的軸截面圓的方程,進(jìn)而將問題轉(zhuǎn)化為拋物線上的點到圓心的距離大于等于半徑恒成立求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)垂直關(guān)系依次求解每個側(cè)面三角形邊長和面積即可得解;(2)建立空間直角坐標(biāo)系,利用向量法求解.小問1詳解】由題可得:,則,SA⊥底面ABCD,所以,SA平面SAB,平面SAB⊥底面ABCD,交線,所以BC⊥平面SAB,BC⊥BS,,所以四棱錐的側(cè)面積【小問2詳解】以A為原點,建立空間直角坐標(biāo)系如圖所示:設(shè)平面SCD的法向量,,取所以取為平面SAB的的法向量所以平面SCD與平面SAB的夾角的余弦值.18、(1)證明見解析;(2).【解析】(1)取的中點為,連接,,證明,,即證平面,即證得面面垂直;(2)建立如圖空間直角坐標(biāo)系,寫出對應(yīng)點的坐標(biāo)和向量的坐標(biāo),再計算平面法向量,利用所求角的正弦為即得結(jié)果.【詳解】(1)證明:如圖,取的中點為,連接,.∵,∴.∵,,∴,同理.又,∴,∴.∵,,平面,∴平面.又平面,∴平面平面;(2)解:如圖建立空間直角坐標(biāo)系,根據(jù)邊長關(guān)系可知,,,,,∴,.∵三棱錐和的體積比為,∴,∴,∴.設(shè)平面的法向量為,則,令,得.設(shè)直線與平面所成角為,則.∴直線與平面所成角的正弦值為.【點睛】方法點睛:求空間中直線與平面所成角的常見方法為:(1)定義法:直接作平面的垂線,找到線面成角;(2)等體積法:不作垂線,通過等體積法間接求點到面的距離,距離與斜線長的比值即線面成角的正弦值;(3)向量法:利用平面法向量與斜線方向向量所成的余弦值的絕對值,即是線面成角的正弦值.19、(1);(2)或.【解析】(1)由虛軸長是12求出半虛軸b,根據(jù)雙曲線的性質(zhì)c2=a2+b2以及離心率,求出a2,寫出雙曲線的標(biāo)準(zhǔn)方程;(2)設(shè)出拋物線方程,利用經(jīng)過,求出拋物線中的參數(shù),即可得到拋物線方程【詳解】焦點在x軸上,設(shè)所求雙曲線的方程為=1(a>0,b>0)由題意,得解得b=6,解得,所以焦點在x軸上的雙曲線的方程為(2)由于點P在第三象限,所以拋物線方程可設(shè)為:或(p>0)當(dāng)方程為,將點代入得16=4p,即p=4,拋物線方程為:;當(dāng)方程為,將點代入得4=8p,即p=,拋物線方程為:;20、(1);(2).【解析】(1)易知為真命題,根據(jù)且命題的真假可知為假命題,結(jié)合函數(shù)零點與對應(yīng)方程的根之間的關(guān)系得出,解不等式即可;(2)根據(jù)一元二次不等式的解法可得和,結(jié)合必要不充分條件的概念可得,利用集合與集合之間的關(guān)系即可得出答案.【詳解】解:(1)對于:所有的非負(fù)整數(shù)都是自然數(shù),顯然正確.因為為假,所以為假.所以“函數(shù)沒有零點”為真,所以,解得.所以實數(shù)的取值范圍是.(2)對于:,解得或.對于,不等式的解集為,因為是的必要不充分條件,所以所以或,所以或,所以實數(shù)的取值范圍是.21、(1)(2)【解析】(1)圓關(guān)于直線對稱,半徑不變,只需求出圓心對稱的坐標(biāo)即可.(2)將四邊形面積分成兩個全等的直角三角形,利用直角三角形的性質(zhì),一條直角邊不變時,斜邊與另外一條直角邊的大小成正相關(guān),從而得到面積的最小值與最大值.【小問1詳解】由題可知的圓心為,圓的半徑與之相同,圓心與之關(guān)于對稱,設(shè)的圓心為,故可根據(jù)中點在對稱的直線上得到①,根據(jù)斜率相乘為-1得到②,聯(lián)立①②可得,所以圓心坐標(biāo)為,且半徑為,故的方程為【小問2詳解】連接,將四邊形分割成兩個全等的直角三角形,所以有,四邊形面積的范圍可轉(zhuǎn)化為MP長度的范圍,在中,根據(jù)勾股定理可知,因為半徑長度不變,所以最大時最大;所以最小時最小;畫出如下圖,當(dāng)動點P移動至在時面積最小,時面積最大;設(shè)點P的坐標(biāo)為,所以有,解得,所以,,所以,所以;,所以.所以22、(Ⅰ)或;(Ⅱ).【解析】(Ⅰ)設(shè)等比數(shù)列的公比為q,由已知建立方程組,求得數(shù)列的首項和公比,從而求得數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中語文《為了忘卻的記念》(同步課件)
- 四川省瀘州市合江縣2024屆九年級下學(xué)期中考二模數(shù)學(xué)試卷(含答案)
- 5年中考3年模擬試卷初中道德與法治九年級下冊02第2課時多彩的職業(yè)
- DB11-T 1991-2022 職業(yè)健康檢查技術(shù)規(guī)范
- DB11-T 1871-2021 建筑工程輪扣式鋼管腳手架安全技術(shù)規(guī)程
- 城市地下管廊渣土清運協(xié)議
- 農(nóng)田水利渣土運輸服務(wù)合同
- 住宅裝修環(huán)保驗收合同
- 咨詢行業(yè)居間合作協(xié)議模板
- 個人園藝植物運輸協(xié)議
- 平行四邊形和梯形教材解讀
- 集體計件工資的計算方法
- 工務(wù)電務(wù)聯(lián)合整治設(shè)備管理辦法
- 北師大版生物八年級上冊18.2《微生物與人類的關(guān)系》課件(共27張PPT)
- 綜合布線 工程 11 綜合布線系統(tǒng)的驗收方案
- 葫蘆絲校本教材(共38頁)
- 怎樣上好一節(jié)數(shù)學(xué)課(課堂PPT)
- 10KV配電調(diào)試報告
- 中醫(yī)院新入職護(hù)士培訓(xùn)計劃
- 中南大學(xué)湘雅二醫(yī)院臨床試驗協(xié)議
- 【研究手冊】初中數(shù)學(xué)課堂合作學(xué)習(xí)的低效成因分析及對策研究
評論
0/150
提交評論