版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
滄州市重點中學2025屆高一數(shù)學第一學期期末聯(lián)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,,則的大小關系為A. B.C. D.2.如圖,在下列四個正方體中,、為正方體兩個頂點,、、為所在棱的中點,則在這四個正方體中,直線與平面不平行的是()A. B.C. D.3.如圖,在平面四邊形中,,,,將其沿對角線折成四面體,使平面平面,若四面體頂點在同一球面上,則該球的表面積為()A. B.C. D.4.在正方體ABCD-A1B1C1D1中,異面直線AD1和B1C所成的角是()A. B.C. D.5.各側(cè)棱長都相等,底面是正多邊形的棱錐稱為正棱錐,正三棱錐的側(cè)棱長為,側(cè)面都是直角三角形,且四個頂點都在同一個球面上,則該球的表面積為()A. B.C. D.6.下列函數(shù)中,在區(qū)間上是增函數(shù)的是()A. B.C. D.7.已知兩條直線,,且,則滿足條件的值為A. B.C.-2 D.28.在平面直角坐標系中,角以為始邊,終邊與單位圓交于點,則()A. B.C. D.9.半徑為2的扇形OAB中,已知弦AB的長為2,則的長為A. B.C. D.10.已知a=4-5,b=log45,c=log0.45,則a,b,c的大小關系為()A.a>b>c B.c>b>aC.b>a>c D.c>a>b二、填空題:本大題共6小題,每小題5分,共30分。11.高三年級的一次模擬考試中,經(jīng)統(tǒng)計某校重點班30名學生的數(shù)學成績均在[100,150](單位:分)內(nèi),根據(jù)統(tǒng)計的數(shù)據(jù)制作出頻率分布直方圖如右圖所示,則圖中的實數(shù)a=__________,若以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,估算該班的數(shù)學成績平均值為__________12.已知是半徑為,圓角為扇形,是扇形弧上的動點,是扇形的接矩形,則的最大值為________.13.寫出一個最小正周期為2的奇函數(shù)________14.直線l過點P(-1,2)且到點A(2,3)和點B(-4,5)的距離相等,則直線l的方程為____________15.求過(2,3)點,且與(x-3)2+y2=1相切的直線方程為_____16.已知函數(shù),將函數(shù)圖象上各點的橫坐標縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位,得到函數(shù)的解析式______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.函數(shù)是定義在上的奇函數(shù),且(1)確定的解析式(2)判斷在上的單調(diào)性,并利用函數(shù)單調(diào)性的定義證明;(3)解關于的不等式18.已知函數(shù),(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;(2)將函數(shù)的圖象上各點的縱坐標保持不變,橫坐標縮短到原來的,再把所得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的值域19.已知,(1)求,的值;(2)求的值20.已知函數(shù),圖象上兩相鄰對稱軸之間的距離為;_______________;(Ⅰ)在①的一條對稱軸;②的一個對稱中心;③的圖象經(jīng)過點這三個條件中任選一個補充在上面空白橫線中,然后確定函數(shù)的解析式;(Ⅱ)若動直線與和的圖象分別交于、兩點,求線段長度的最大值及此時的值.注:如果選擇多個條件分別解答,按第一個解答計分.21.如圖,在中,已知為線段上的一點,.(1)若,求的值;(2)若,,,且與的夾角為時,求的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】利用利用等中間值區(qū)分各個數(shù)值的大小【詳解】;;故故選A【點睛】利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性時要根據(jù)底數(shù)與的大小區(qū)別對待2、D【解析】利用線面平行判定定理可判斷A、B、C選項的正誤;利用線面平行的性質(zhì)定理可判斷D選項的正誤.【詳解】對于A選項,如下圖所示,連接,在正方體中,且,所以,四邊形為平行四邊形,則,、分別為、的中點,則,,平面,平面,平面;對于B選項,連接,如下圖所示:在正方體中,且,所以,四邊形為平行四邊形,則,、分別為、的中點,則,,平面,平面,平面;對于C選項,連接,如下圖所示:在正方體中,且,所以,四邊形為平行四邊形,則,、分別為、中點,則,,平面,平面,平面;對于D選項,如下圖所示,連接交于點,連接,連接交于點,若平面,平面,平面平面,則,則,由于四邊形為正方形,對角線交于點,則為的中點,、分別為、的中點,則,且,則,,則,又,則,所以,與平面不平行;故選:D.【點睛】判斷或證明線面平行的常用方法:(1)利用線面平行的定義,一般用反證法;(2)利用線面平行的判定定理(,,),其關鍵是在平面內(nèi)找(或作)一條直線與已知直線平行,證明時注意用符號語言的敘述;(3)利用面面平行的性質(zhì)定理(,).3、B【解析】由題意,的中點就是球心,求出球的半徑,即可得到球的表面積【詳解】解:由題意,四面體頂點在同一個球面上,和都是直角三角形,所以的中點就是球心,所以,球的半徑為:,所以球的表面積為:故選B【點睛】本題是基礎題,考查四面體的外接球的表面積的求法,找出外接球的球心,是解題的關鍵,考查計算能力,空間想象能力4、D【解析】正方體ABCD-A1B1C1D1的面對角線AD1和面對角線DA1所成的角就是異面直線AD1和B1C所成的角,利用正方體的性質(zhì)即得【詳解】由正方體的性質(zhì)可知,,∴四邊形為平行四邊形,∴DA1∥B1C,∴正方體ABCD-A1B1C1D1的面對角線AD1和面對角線DA1所成的角就是異面直線AD1和B1C所成的角,∵四邊形ADD1A1正方形,∴直線AD1和DA1垂直,∴異面直線AD1和B1C所成的角是90°故選:D5、D【解析】因為側(cè)棱長為a的正三棱錐P﹣ABC的側(cè)面都是直角三角形,且四個頂點都在一個球面上,三棱錐的正方體的一個角,把三棱錐擴展為正方體,它們有相同的外接球,球的直徑就是正方體的對角線,正方體的對角線長為:;所以球的表面積為:4π=3πa2故答案為D.點睛:本題考查了球與幾何體的問題,是高考中的重點問題,一般外接球需要求球心和半徑,首先應確定球心的位置,球心到各頂點距離相等,這樣可先確定幾何體中部分點組成的多邊形的外接圓的圓心,過圓心且垂直于多邊形所在平面的直線上任一點到多邊形的頂點的距離相等,然后同樣的方法找到另一個多邊形的各頂點距離相等的直線,這樣兩條直線的交點,就是其外接球的球心,有時也可利用補體法得到半徑.6、B【解析】根據(jù)函數(shù)單調(diào)性的定義和性質(zhì)分別進行判斷即可【詳解】解:對于選項A.的對稱軸為,在區(qū)間上是減函數(shù),不滿足條件對于選項B.在區(qū)間上是增函數(shù),滿足條件對于選項C.在區(qū)間上是減函數(shù),不滿足條件對于選項D.在區(qū)間上是減函數(shù),不滿足條件故滿足條件的函數(shù)是故選:B【點睛】本題主要考查函數(shù)單調(diào)性的判斷,要求熟練掌握常見函數(shù)的單調(diào)性,屬基礎題7、C【解析】根據(jù)兩條直線l1:x+2ay﹣1=0,l2:x﹣4y=0,且l1∥l2,可得求得a=﹣2,故選C8、A【解析】根據(jù)任意角三角函數(shù)的概念可得出,然后利用誘導公式求解.【詳解】因為角以為始邊,且終邊與單位圓交于點,所以,則.故選:A.【點睛】當以為始邊,已知角終邊上一點的坐標為時,則,.9、C【解析】由已知可求圓心角的大小,根據(jù)弧長公式即可計算得解【詳解】設扇形的弧長為l,圓心角大小為,∵半徑為2的扇形OAB中,弦AB的長為2,∴,∴故選C【點睛】本題主要考查了弧長公式的應用,考查了數(shù)形結(jié)合思想的應用,屬于基礎題10、C【解析】根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,判斷的大致范圍,即可比較大小.【詳解】因為,且,故;又,故;又,故;故.故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、①.0.005(或)②.126.5(或126.5分)【解析】根據(jù)頻率分布直方圖的性質(zhì)得到參數(shù)值,進而求得平均值.詳解】由頻率分布直方圖可得:,∴;該班的數(shù)學成績平均值為.故答案為:12、【解析】設,用表示出的長度,進而用三角函數(shù)表示出,結(jié)合輔助角公式即可求得最大值.【詳解】設扇形的半徑為,是扇形的接矩形則,所以則所以因為,所以所以當時,取得最大值故答案為:【點睛】本題考查了三角函數(shù)的應用,將邊長轉(zhuǎn)化為三角函數(shù)式,結(jié)合輔助角公式求得最值是常用方法,屬于中檔題.13、【解析】根據(jù)奇函數(shù)性質(zhì)可考慮正弦型函數(shù),,再利用周期計算,選擇一個作答即可.【詳解】由最小正周期為2,可考慮三角函數(shù)中的正弦型函數(shù),,滿足,即是奇函數(shù);根據(jù)最小正周期,可得.故函數(shù)可以是中任一個,可取.故答案為:.14、x+3y-5=0或x=-1【解析】當直線l為x=﹣1時,滿足條件,因此直線l方程可以為x=﹣1當直線l的斜率存在時,設直線l的方程為:y﹣2=k(x+1),化為:kx﹣y+k+2=0,則,化為:3k﹣1=±(3k+3),解得k=﹣∴直線l的方程為:y﹣2=﹣(x+1),化為:x+3y﹣5=0綜上可得:直線l的方程為:x+3y﹣5=0或x=﹣1故答案為x+3y﹣5=0或x=﹣115、或【解析】當直線沒有斜率時,直線的方程為x=2,滿足題意,所以此時直線的方程為x=2.當直線存在斜率時,設直線的方程為所以故直線的方程為或.故填或.16、【解析】根據(jù)三角函數(shù)圖象的變換可得答案.【詳解】將函數(shù)圖象上各點的橫坐標縮短到原來的倍,得,再將得到的圖象向右平移個單位得故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)增函數(shù),證明見解析(3)【解析】(1)根據(jù)奇偶性的定義與性質(zhì)求解(2)由函數(shù)的單調(diào)性的定義證明(3)由函數(shù)奇偶性和單調(diào)性,轉(zhuǎn)化不等式后再求解【小問1詳解】根據(jù)題意,函數(shù)是定義在上的奇函數(shù),則,解可得;又由,則有,解可得;則【小問2詳解】由(1)的結(jié)論,,在區(qū)間上為增函數(shù);證明:設,則又由,則,,,,則,即則函數(shù)在上為增函數(shù).【小問3詳解】由(1)(2)知為奇函數(shù)且在上為增函數(shù).,解可得:,即不等式的解集為.18、(1);(2)【解析】(1)根據(jù)正弦函數(shù)的周期性和單調(diào)性即可得出答案;(2)根據(jù)周期變換和平移變換求出函數(shù),再根據(jù)余弦函數(shù)的性質(zhì)即可得出答案.【小問1詳解】解:由函數(shù),則函數(shù)f(x)的最小正周期,令,解得,所以函數(shù)f(x)的單調(diào)遞增區(qū)間為;【小問2詳解】解:函數(shù)的圖象上各點的縱坐標保持不變,橫坐標縮短到原來的,得到,再把所得到的圖象向左平移個單位長度,得到,當時,,所以,所以函數(shù)在區(qū)間上的值域為.19、(1),(2)【解析】(1)首先利用誘導公式得到,再根據(jù)同角三角函數(shù)的基本關系計算可得;(2)利用誘導公式化簡,再將弦化切,最后代入求值即可;【小問1詳解】解:因為,,所以,又解得或,因為,所以【小問2詳解】解:20、(Ⅰ)選①或②或③,;(Ⅱ)當或時,線段的長取到最大值.【解析】(Ⅰ)先根據(jù)題中信息求出函數(shù)的最小正周期,進而得出.選①,根據(jù)題意得出,結(jié)合的取值范圍可求出的值,進而得出函數(shù)的解析式;選②,根據(jù)題意得出,結(jié)合的取值范圍可求出的值,進而得出函數(shù)的解析式;選③,根據(jù)題意得出,結(jié)合的取值范圍可求出的值,進而得出函數(shù)的解析式;(Ⅱ)令,利用三角恒等變換思想化簡函數(shù)的解析式,利用正弦型函數(shù)的基本性質(zhì)求出在上的最大值和最小值,由此可求得線段長度的最大值及此時的值.【詳解】(Ⅰ)由于函數(shù)圖象上兩相鄰對稱軸之間的距離為,則該函數(shù)的最小正周期為,,此時.若選①,則函數(shù)的一條對稱軸,則,得,,當時,,此時,;若選②,則函數(shù)的一個對稱中心,則,得,,當時,,此時,;若選③,則函數(shù)的圖象過點,則,得,,,,解得,此時,.綜上所述,;(Ⅱ)令,,,,當或
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 戶外探索課程設計意圖
- 邁達斯懸臂法課程設計
- 運籌學課課程設計搭配
- 轉(zhuǎn)向臂課程設計夾具CATIA圖紙
- 機械修理工操作規(guī)程(3篇)
- 船舶和海洋工程課程設計
- 2025版股權投資與退出機制協(xié)議書3篇
- 自動裝箱機課程設計
- 2025年度線下書店連鎖加盟合同協(xié)議3篇
- 2025年度濟南城市更新項目合作協(xié)議3篇
- 2024河南鄭州市金水區(qū)事業(yè)單位招聘45人歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 食物損失和浪費控制程序
- TCI 373-2024 中老年人免散瞳眼底疾病篩查規(guī)范
- 2024四川太陽能輻射量數(shù)據(jù)
- 石油鉆采專用設備制造考核試卷
- 法人變更股權轉(zhuǎn)讓協(xié)議書(2024版)
- 研究生中期考核匯報模板幻燈片
- 培訓機構與學校合作協(xié)議書范本
- 留置導尿法操作評分標準
- 2024年高考數(shù)學經(jīng)典解答題-立體幾何專項復習17題(附答案)
- 麻醉管理-血氣分析在手術中的應用
評論
0/150
提交評論