版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
天津市東麗區(qū)第一百中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.有下列四個命題,其中真命題是()A., B.,,C.,, D.,2.已知函數(shù),在定義域內(nèi)任取一點,則使的概率是()A. B.C. D.3.已知拋物線的焦點為,過點且傾斜角為銳角的直線與交于、兩點,過線段的中點且垂直于的直線與的準(zhǔn)線交于點,若,則的斜率為()A. B.C. D.4.已知空間向量,,則()A. B.19C.17 D.5.①命題設(shè)“,若,則或”;②若“”為真命題,則p,q均為真命題;③“”是函數(shù)為偶函數(shù)的必要不充分條件;④若為空間的一個基底,則構(gòu)成空間的另一基底;其中正確判斷的個數(shù)是()A.1 B.2C.3 D.46.若向量,,,則()A. B.C. D.7.在等比數(shù)列中,,且,則t=()A.-2 B.-1C.1 D.28.如圖所示,已知是橢圓的左、右焦點,為橢圓的上頂點,在軸上,,且是的中點,為坐標(biāo)原點,若點到直線的距離為3,則橢圓的方程為()A B.C. D.9.拋物線y2=4x的焦點坐標(biāo)是A.(0,2) B.(0,1)C.(2,0) D.(1,0)10.19世紀法國著名數(shù)學(xué)家加斯帕爾·蒙日,創(chuàng)立了畫法幾何學(xué),推動了空間幾何學(xué)的獨立發(fā)展,提出了著名的蒙日圓定理:橢圓的兩條切線互相垂直,則切線的交點位于一個與橢圓同心的圓上,稱為蒙日圓,且該圓的半徑等于橢圓長半軸長與短半軸長的平方和的算術(shù)平方根.若圓與橢圓的蒙日圓有且僅有一個公共點,則b的值為()A. B.C. D.11.已知,,,其中,,,則()A. B.C. D.12.若隨機事件滿足,,,則事件與的關(guān)系是()A.互斥 B.相互獨立C.互為對立 D.互斥且獨立二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標(biāo)系中,向量為平面ABC的一個法向量,其中,,則向量的坐標(biāo)為______14.若滿足約束條件,則的最大值為_________.15.已知函數(shù),則________.16.拋物線的焦點坐標(biāo)為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某小學(xué)調(diào)查學(xué)生跳繩的情況,在五年級隨機抽取了100名學(xué)生進行測試,得到頻率分布直方圖如下,且規(guī)定積分規(guī)則如下表:每分鐘跳繩個數(shù)得分17181920(1)求頻率分布直方圖中,跳繩個數(shù)在區(qū)間的小矩形的高;(2)依據(jù)頻率分布直方圖,把第40百分位數(shù)劃為合格線,低于合格分數(shù)線的學(xué)生需補考,試確定本次測試的合格分數(shù)線;(3)依據(jù)積分規(guī)則,求100名學(xué)生的平均得分.18.(12分)已知在長方形ABCD中,AD=2AB=2,點E是AD的中點,沿BE折起平面ABE,使平面ABE⊥平面BCDE.(1)求證:在四棱錐A-BCDE中,AB⊥AC.(2)在線段AC上是否存在點F,使二面角A-BE-F的余弦值為?若存在,找出點F的位置;若不存在,說明理由.19.(12分)設(shè)數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)記,數(shù)列的前項和為,求不等式的解集.20.(12分)已知直線.(1)若,求直線與直線的交點坐標(biāo);(2)若直線與直線垂直,求a的值.21.(12分)已知拋物線,直線與交于兩點且(為坐標(biāo)原點)(1)求拋物線的方程;(2)設(shè),若直線的傾斜角互補,求的值22.(10分)已知圓.(1)過點作圓的切線,求切線的方程;(2)若直線過點且被圓截得的弦長為2,求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】對于選項A,令即可驗證其不正確;對于選項C、選項D,令,即可驗證其均不正確,進而可得出結(jié)果.【詳解】對于選項A,令,則,故A錯;對于選項B,令,則,顯然成立,故B正確;對于選項C,令,則顯然無解,故C錯;對于選項D,令,則顯然不成立,故D錯.故選B【點睛】本題主要考查命題真假的判定,用特殊值法驗證即可,屬于??碱}型.2、A【解析】解不等式,根據(jù)與長度有關(guān)的幾何概型即可求解.【詳解】由題意得,即,由幾何概型得,在定義域內(nèi)任取一點,使的概率是.故選:A.3、C【解析】設(shè)直線的方程為,其中,設(shè)點、、,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,求出、,根據(jù)條件可求得的值,即可得出直線的斜率.【詳解】拋物線的焦點為,設(shè)直線的方程為,其中,設(shè)點、、,聯(lián)立可得,,,所以,,,,直線的斜率為,則直線的斜率為,所以,,因為,則,因為,解得,因此,直線的斜率為.故選:C.4、D【解析】先求出的坐標(biāo),再求出其模【詳解】因為,,所以,故,故選:D.5、B【解析】利用逆否命題、含有邏輯聯(lián)結(jié)詞命題的真假性、充分和必要條件、空間基底等知識對四個判斷進行分析,由此確定正確答案.【詳解】①,原命題的逆否命題為“,若且,則”,逆否命題是真命題,所以原命題是真命題,①正確.②,若“”為真命題,則p,q至少有一個真命題,②錯誤.③,函數(shù)為偶函數(shù)的充要條件是“”.所以“”是函數(shù)為偶函數(shù)的充分不必要條件,③錯誤.④,若為空間的一個基底,即不共面,若共面,則存在不全為零的,使得,故,因為為空間的一個基底,,故,矛盾,故不共面,所以構(gòu)成空間的另一基底,④正確.所以正確的判斷是個.故選:B6、A【解析】根據(jù)向量垂直得到方程,求出的值.【詳解】由題意得:,解得:.故選:A7、A【解析】先求出,利用等比中項求出t.【詳解】在等比數(shù)列中,,且,所以所以,即,解得:.當(dāng)時,,不符合等比數(shù)列的定義,應(yīng)舍去,故.故選:A.8、D【解析】由題設(shè)可得,直線的方程為,點線距離公式表示到直線的距離,又聯(lián)立解得即可得出答案.【詳解】且,則△是等邊三角形,設(shè),則①,∴直線方程為,即,∴到直線的距離為②,又③,聯(lián)立①②③,解得,,故橢圓方程為.故選:D.9、D【解析】的焦點坐標(biāo)為,故選D.【考點】拋物線的性質(zhì)【名師點睛】本題考查拋物線的定義.解析幾何是中學(xué)數(shù)學(xué)的一個重要分支,圓錐曲線是解析幾何的重要內(nèi)容,它們的定義、標(biāo)準(zhǔn)方程、簡單幾何性質(zhì)是我們要重點掌握的內(nèi)容,一定要熟記掌握10、B【解析】由題意求出蒙日圓方程,再由兩圓只有一個交點可知兩圓相切,從而列方程可求出b的值【詳解】由題意可得橢圓的蒙日圓的半徑,所以蒙日圓方程為,因為圓與橢圓的蒙日圓有且僅有一個公共點,所以兩圓相切,所以,解得,故選:B11、C【解析】先令函數(shù),求導(dǎo)判斷函數(shù)的單調(diào)性,并作出函數(shù)的圖像,由函數(shù)的單調(diào)性判斷,再由對稱性可得.【詳解】由,則,同理,,令,則,當(dāng);當(dāng),∴在上單調(diào)遞減,單調(diào)遞增,所以,即可得,又,,由圖的對稱性可知,.故選:C12、B【解析】利用獨立事件,互斥事件和對立事件的定義判斷即可【詳解】解:因為,,又因為,所以有,所以事件與相互獨立,不互斥也不對立故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)向量為平面ABC的一個法向量,由求解.【詳解】因為,,所以,又因為向量為平面ABC的一個法向量,所以,解得,所以,故答案為:14、7【解析】畫出約束條件所表示的平面區(qū)域,結(jié)合圖象和直線在軸上的截距,確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解.【詳解】畫出不等式組所表示的平面區(qū)域,如圖所示,目標(biāo)函數(shù)可化為,當(dāng)直線過點點時,此時直線在軸上的截距最大,此時目標(biāo)函數(shù)取得最大值,又由,解得,即,所以目標(biāo)函數(shù)的最大值為.故答案為:.15、2【解析】根據(jù)導(dǎo)數(shù)的計算法則計算即可.【詳解】∵,∴,∴∴.故答案為:2.16、【解析】根據(jù)拋物線方程求得p,則根據(jù)拋物線性質(zhì)可求得拋物線的焦點坐標(biāo).解:拋物線方程中p=2,∴拋物線焦點坐標(biāo)為(-1,0)故填寫考點:拋物線的簡單性質(zhì)點評:本題主要考查了拋物線的簡單性質(zhì).屬基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)分【解析】(1)根據(jù)頻率之和為列方程來求得跳繩個數(shù)在區(qū)間的小矩形的高.(2)根據(jù)百分位數(shù)的計算方法計算出合格分數(shù)線.(3)根據(jù)平均數(shù)的求法求得名學(xué)生的平均得分.【小問1詳解】設(shè)跳繩個數(shù)在區(qū)間的小矩形的高為,則,解得.【小問2詳解】第一組的頻率為,第二組的頻率為,第三組的頻率為,第四組的頻率為,第五組的頻率為,第六組的頻率為,所以第百分位數(shù)為.也即合格分數(shù)線為.【小問3詳解】名學(xué)生的平均得分為分.18、(1)證明見解析(2)點F為線段AC的中點【解析】(1)由平面幾何知識證得CE⊥BE,再根據(jù)面面垂直的性質(zhì),線面垂直的判定和性質(zhì)可得證;(2)取BE的中點O,以O(shè)為原點,分別以的方向為x軸,y軸,z軸建立空間直角坐標(biāo)系,假設(shè)在線段AC上存在點F,設(shè)=λ,運用二面角的向量求解方法可求得,可得點F的位置.【小問1詳解】證明:因為在長方形ABCD中,AD=2AB=2,點E是AD的中點,所以BE=CE=2,又BC=2,所以,所以CE⊥BE,又平面ABE⊥平面BCDE,面面,所以CE⊥平面ABE,所以AB⊥CE.又AB⊥AE,,所以AB⊥平面AEC,即得AB⊥AC.【小問2詳解】解:存在點F,F(xiàn)為線段AC的中點.由(1)得△ABE和△BEC均為等腰直角三角形,取BE的中點O,則,又平面ABE⊥平面BCDE,面面,所以面,以O(shè)為原點,分別以的方向為x軸,y軸,z軸建立空間直角坐標(biāo)系,如圖所示,取平面ABE的一個法向量為.假設(shè)在線段AC上存在點F,使二面角A-BE-F的余弦值為.則A(0,0,1),B(1,0,0),C(-1,2,0),E(-1,0,0),=(1,0,1),=(-1,2,-1),設(shè)=λ,則+λ=(1-λ,2λ,1-λ),又=(2,0,0),設(shè)平面BEF的法向量為,可得,即得,可取y=1,得,所以,解得λ=,即當(dāng)點F為線段AC的中點時,二面角A-BE-F的余弦值為.19、(1)(2)【解析】(1)利用與的關(guān)系求解即可;(2)首先利用裂項求和得到,從而得到,再解不等式即可.【小問1詳解】令,則,當(dāng)時,,當(dāng)時,也符合上式,即數(shù)列的通項公式為.【小問2詳解】由(1)得,則,所以故可化為:,故,故不等式的解集為.20、(1)(2)【解析】(1)聯(lián)立兩直線方程,解方程組即可得解;(2)根據(jù)兩直線垂直列出方程,解之即可得出答案.【小問1詳解】解:當(dāng)時,直線,聯(lián)立,解得,即交點坐標(biāo)為;【小問2詳解】解:直線與直線垂直,則,解得.21、(1);(2).【解析】(1)利用韋達定理法即求;(2)由題可求,,再結(jié)合條件即得.【小問1詳解】設(shè),,由,得,故,由,可得,即,∴,故拋物線的方程為:;【小問2詳解】設(shè)的傾斜角為,則的傾斜角為,∴由,得,∴,∴,同理,由,得,∴,即,故.22、(1);(2)或.【解析】(1)根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新能源車輛贈予及充電設(shè)施安裝合同3篇
- 中國石化2024年度原料進口協(xié)議模板版
- 2025年智能工廠車間場地租賃及維護服務(wù)合同范本4篇
- 二零二五年院落出租與非物質(zhì)文化遺產(chǎn)保護合同3篇
- 2025版智能門面房租賃服務(wù)合作協(xié)議4篇
- 2025版海外院校代理傭金合同標(biāo)準(zhǔn)范本4篇
- 二零二五版高速公路監(jiān)控系統(tǒng)光纜安裝合同3篇
- 2025年項目經(jīng)理入職及項目團隊激勵方案合同3篇
- 現(xiàn)代醫(yī)療技術(shù)下的疾病預(yù)防策略
- 二零二五版美團騎手薪酬福利及晉升體系合同4篇
- 【采購管理優(yōu)化探究文獻綜述3000字】
- 《大學(xué)生職業(yè)發(fā)展與就業(yè)指導(dǎo)》課程標(biāo)準(zhǔn)
- 第23課《出師表》課件(共56張)
- GB/T 3953-2024電工圓銅線
- 發(fā)電機停電故障應(yīng)急預(yù)案
- 接電的施工方案
- 幼兒阿拉伯?dāng)?shù)字描紅(0-100)打印版
- 社會組織等級評估報告模板
- GB/T 12173-2008礦用一般型電氣設(shè)備
- 新媒體研究方法教學(xué)ppt課件(完整版)
- 2020新版?zhèn)€人征信報告模板
評論
0/150
提交評論