江西省贛州市十五縣市2025屆高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第1頁
江西省贛州市十五縣市2025屆高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第2頁
江西省贛州市十五縣市2025屆高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第3頁
江西省贛州市十五縣市2025屆高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第4頁
江西省贛州市十五縣市2025屆高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省贛州市十五縣市2025屆高二數(shù)學(xué)第一學(xué)期期末考試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點坐標(biāo)為()A. B.C. D.2.已知雙曲線的左、右焦點分別為,過點的直線與圓相切于點,交雙曲線的右支于點,且點是線段的中點,則雙曲線的漸近線方程為()A. B.C. D.3.在等差數(shù)列{}中,,,則的值為()A.18 B.20C.22 D.244.函數(shù),的值域為()A. B.C. D.5.隨著城市生活節(jié)奏的加快,網(wǎng)上訂餐成為很多上班族的選擇,下表是某外賣騎手某時間段訂餐數(shù)量與送餐里程的統(tǒng)計數(shù)據(jù)表:訂餐數(shù)/份122331送餐里程/里153045現(xiàn)已求得上表數(shù)據(jù)的回歸方程中的值為1.5,則據(jù)此回歸模型可以預(yù)測,訂餐100份外賣騎手所行駛的路程約為()A.155里 B.145里C.147里 D.148里6.已知等比數(shù)列的前n項和為,,,則()A. B.C. D.7.函數(shù)的圖象如圖所示,則下列大小關(guān)系正確的是()A.B.C.D.8.若正實數(shù)、滿足,且不等式有解,則實數(shù)取值范圍是()A.或 B.或C. D.9.定義運算:.已知,都是銳角,且,,則()A. B.C. D.10.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列說法正確的是()A.是函數(shù)的極大值點B.函數(shù)在區(qū)間上單調(diào)遞增C.是函數(shù)的最小值點D.曲線在處切線的斜率小于零11.若關(guān)于一元二次不等式的解集為,則實數(shù)的取值范圍是()A. B.C. D.12.對于函數(shù),下列說法正確的是()A.的單調(diào)減區(qū)間為B.設(shè),若對,使得成立,則C.當(dāng)時,D.若方程有4個不等的實根,則二、填空題:本題共4小題,每小題5分,共20分。13.矩形ABCD中,,在CD邊上任取一點M,則的最大邊是AB的概率為______14.直線與兩坐標(biāo)軸相交于,兩點,則線段的垂直平分線的方程為___________.15.已知點,則線段的垂直平分線的一般式方程為__________.16.曲線在處的切線方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓(1)若一直線被圓C所截得的弦的中點為,求該直線的方程;(2)設(shè)直線與圓C交于A,B兩點,把的面積S表示為m的函數(shù),并求S的最大值18.(12分)若分別是橢圓的左、右焦點,是該橢圓上的一個動點,且(1)求橢圓的方程(2)是否存在過定點的直線與橢圓交于不同的兩點,使(其中為坐標(biāo)原點)?若存在,求出直線的斜率;若不存在,說明理由19.(12分)設(shè)或,(1)若時,p是q的什么條件?(2)若p是q的必要不充分條件,求a的取值范圍20.(12分)已知拋物線的焦點為,經(jīng)過點的直線與拋物線交于兩點,其中點A在第一象限;(1)若直線的斜率為,求的值;(2)求線段的長度的最小值21.(12分)已知圓心為的圓,滿足下列條件:圓心在軸上,與直線相切,且被軸截得的弦長為,圓的面積小于(1)求圓的標(biāo)準(zhǔn)方程;(2)設(shè)過點的直線與圓交于不同的兩點、,以、為鄰邊作平行四邊形.是否存在這樣的直線,使得直線與恰好平行?如果存在,求出的方程,如果不存在,請說明理由22.(10分)求滿足下列條件的雙曲線的標(biāo)準(zhǔn)方程(1)焦點在x軸上,實軸長為4,實半軸長是虛半軸長的2倍;(2)焦點在y軸上,漸近線方程為,焦距長為

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先把拋物線方程化為標(biāo)準(zhǔn)方程,求出即可求解【詳解】由,有,可得,拋物線的焦點坐標(biāo)為故選:C2、D【解析】焦點三角形問題,可結(jié)合為三角形的中位線,判斷:焦點三角形為直角三角形,并且有,,可由勾股定理得出關(guān)系,從而得到關(guān)系,從而求得漸近線方程.【詳解】由題意知,,且點是線段的中點,點是線段的中點,為三角形的中位線故,故,由雙曲線定義有由勾股定理有故則則,故故漸近線方程為:故選:D【點睛】雙曲線上一點與兩焦點構(gòu)成的三角形,稱為雙曲線的焦點三角形,與焦點三角形有關(guān)的計算或證明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的關(guān)系3、B【解析】根據(jù)等差數(shù)列通項公式相關(guān)計算求出公差,進而求出首項.【詳解】設(shè)公差為,由題意得:,解得:,所以.故選:B4、D【解析】求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)在函數(shù)最值上的應(yīng)用,即可求出結(jié)果.【詳解】因為,所以,令,又,所以或;所以當(dāng)時,;當(dāng)時,;所以在單調(diào)遞增,在上單調(diào)遞減;所以;又,,所以;所以函數(shù)的值域為.故選:D.5、C【解析】由統(tǒng)計數(shù)據(jù)求樣本中心,根據(jù)樣本中心在回歸直線上求得,即可得回歸方程,進而估計時的y值即可.【詳解】由題意:,,則,可得,故,當(dāng)時,.故選:C6、A【解析】由,可得等比數(shù)列公比q=2,利用等比數(shù)列求和公式和通項公式即可求.【詳解】設(shè)等比數(shù)列的公比為q,則,.故選:A.7、C【解析】根據(jù)導(dǎo)數(shù)的幾何意義可得答案.【詳解】因為函數(shù)在某點處的導(dǎo)數(shù)值表示的是此點處切線的斜率,所以由圖可得,故選:C8、A【解析】將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,可得出關(guān)于實數(shù)的不等式,解之即可.【詳解】因為正實數(shù)、滿足,則,即,所以,,當(dāng)且僅當(dāng)時,即當(dāng)時,等號成立,即的最小值為,因為不等式有解,則,即,即,解得或.故選:A.II卷9、B【解析】,只需求出與的正、余弦值即可,用平方關(guān)系時注意角的范圍.【詳解】解:因為,都是銳角,所以,,因為,所以,即,,所以,,因為,所有,故選:B.【點睛】信息給予題,已知三角函數(shù)值求三角函數(shù)值,考查根據(jù)三角函數(shù)的恒等變換求值,基礎(chǔ)題.10、B【解析】根據(jù)導(dǎo)函數(shù)的圖象,得到函數(shù)的單調(diào)區(qū)間與極值點,即可判斷;【詳解】解:由導(dǎo)函數(shù)的圖象可知,當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)或時,則在上單調(diào)遞增,在上單調(diào)遞減,所以函數(shù)在處取得極小值即最小值,所以是函數(shù)的極小值點與最小值點,因為,所以曲線在處切線的斜率大于零,故選:B11、B【解析】結(jié)合判別式求得的取值范圍.【詳解】由于關(guān)于的一元二次不等式的解集為,所以,解得,所以實數(shù)的取值范圍是.故選:B12、B【解析】函數(shù),,,,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及極值,畫出圖象A.結(jié)合圖象可判斷出正誤;B.設(shè)函數(shù)的值域為,函數(shù),的值域為.若對,,使得成立,可得.分別求出,,即可判斷出正誤C.由函數(shù)在單調(diào)遞減,可得函數(shù)在單調(diào)遞增,由此即可判斷出正誤;D.方程有4個不等的實根,則,且時,有2個不等的實根,由圖象即可判斷出正誤;【詳解】函數(shù),,,,可得函數(shù)在上單調(diào)遞減,在上單調(diào)遞減,在上單調(diào)遞增,當(dāng)時,,由此作出函數(shù)的大致圖象,如圖示:A.由上述分析結(jié)合圖象,可得A不正確B.設(shè)函數(shù)的值域為,函數(shù),的值域為,對,,.,,由,若對,,使得成立,則,所以,因此B正確C.由函數(shù)在單調(diào)遞減,可得函數(shù)在單調(diào)遞增,因此當(dāng)時,,即,因此C不正確;D.方程有4個不等的實根,則,且時,有2個不等的實根,結(jié)合圖象可知,因此D不正確故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先利用勾股定理得出滿足條件的長度,再結(jié)合幾何概型的概率公式得出答案.【詳解】設(shè),當(dāng)時,,;當(dāng)時,,所以當(dāng)?shù)降木嚯x都大于時,的最大邊是AB,所以的最大邊是AB的概率為.故答案為:14、【解析】由直線的方程求出直線的斜率以及,兩點坐標(biāo),進而可得線段的垂直平分線的斜率以及線段的中點坐標(biāo),利用點斜式即可求解.【詳解】由直線可得,所以直線的斜率為,所以線段的垂直平分線的斜率為,令可得;令可得;即,,所以線段的中點坐標(biāo)為,所以線段的垂直平分線的方程為,整理得.故答案為:.15、【解析】由中點坐標(biāo)公式和斜率公式可得的中點和直線斜率,由垂直關(guān)系可得垂直平分線的斜率,由點斜式可得直線方程,化為一般式即可【詳解】由中點坐標(biāo)公式可得,的中點為,可得直線的斜率為,由垂直關(guān)系可得其垂直平分線的斜率為,故可得所求直線的方程為:,化為一般式可得故答案為:16、【解析】先求出函數(shù)的導(dǎo)函數(shù),然后結(jié)合導(dǎo)數(shù)的幾何意義求解即可.【詳解】解:由,得,則,即當(dāng)時,,所以切線方程為:,故答案為:.【點睛】本題考查了曲線在某點處的切線方程的求法,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),最大值為.【解析】(1)利用垂徑定理求出斜率,即可求出直線的方程;(2)利用幾何法表示出弦長與d的關(guān)系,利用基本不等式求出的面積S的最大值【小問1詳解】圓化為標(biāo)準(zhǔn)方程為:.則.設(shè)所求的直線為m.由圓的幾何性質(zhì)可知:,所以,所以所求的直線為:,即.【小問2詳解】設(shè)圓心C到直線l的距離為d,則,且,所以因為直線與圓C交于A,B兩點,所以,解得:且.而的面積:因為所以(其中時等號成立).所以S的最大值為.18、(1);(2)存在;【解析】(1)根據(jù)已知條件求得,由此求得橢圓的方程.(2)設(shè)出直線的方程并與橢圓方程聯(lián)立,化簡寫出根與系數(shù)關(guān)系,利用列方程,化簡求得直線的斜率.【小問1詳解】依題意,得橢圓的方程為【小問2詳解】存在.理由如下:顯然當(dāng)直線的斜率不存在,即時,不滿足條件故由題意可設(shè)的方程為.由是直線與橢圓的兩個不同的交點,設(shè),由消去y,并整理,得,則,解得,由根與系數(shù)的關(guān)系得,,即存在斜率的直線與橢圓交于不同的兩點,使19、(1)充要條件;(2).【解析】(1)根據(jù)解一元二次不等式的方法,結(jié)合充分性、必要性的定義進行求解判斷即可;(2)根據(jù)必要不充分條件的性質(zhì)進行求解即可.【小問1詳解】因為,所以,解得或,顯然p是q的充要條件;【小問2詳解】,當(dāng)時,該不等式的解集為全體實數(shù)集,顯然由,但不成立,因此p是q的充分不必要條件,不符合題意;當(dāng)時,該不等式的解集為:,顯然當(dāng)時,不一定成立,因此p不是q的必要不充分條件,當(dāng)時,該不等式解集為:,要想p是q的必要不充分條件,只需,而,所以,因此a的取值范圍為:.20、(1)3;(2)12.【解析】(1)聯(lián)立直線l與拋物線C的方程,求出A和B的橫坐標(biāo)即可得AFBF(2)設(shè)直線l方程為,與拋物線C方程聯(lián)立,求出線段AB長度求其最小值即可.【小問1詳解】設(shè),拋物線的焦點為,直線l經(jīng)過點F且斜率,直線l的方程為,將直線l方程與拋物線消去y可得,點A是第一象限內(nèi)的交點,解方程得,∴.【小問2詳解】設(shè),由題知直線l斜率不為0,故設(shè)直線l的方程為:,代入拋物線C的方程化簡得,,∵>0,∴,∴,當(dāng)且僅當(dāng)m=0時取等號,∴AB長度最小值為12.21、(1);(2)不存在,理由見解析.【解析】(1)設(shè)圓心,設(shè)圓的半徑為,可得出,根據(jù)已知條件可得出關(guān)于實數(shù)的方程,求出的值,可得出的值,進而可得出圓的標(biāo)準(zhǔn)方程;(2)分析可知直線的斜率存在,可設(shè)直線的方程為,設(shè)點、,將直線的方程與圓的方程聯(lián)立,由可求得的取值范圍,列出韋達定理,分析可得,可求得點的坐標(biāo),由已知可得出,求出的值,檢驗即可得出結(jié)論.【小問1詳解】解:設(shè)圓心,設(shè)圓的半徑為,則,由題意可得,由勾股定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論