版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省玉溪市新平縣重點名校2024屆中考數(shù)學押題卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.有6個相同的立方體搭成的幾何體如圖所示,則它的主視圖是()A. B. C. D.2.如圖,已知在△ABC,AB=AC.若以點B為圓心,BC長為半徑畫弧,交腰AC于點E,則下列結論一定正確的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE3.某學習小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計圖,則符合這一結果的實驗最有可能的是()A.袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球B.擲一枚質地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)C.先后兩次擲一枚質地均勻的硬幣,兩次都出現(xiàn)反面D.先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過94.如圖,a∥b,點B在直線b上,且AB⊥BC,∠1=40°,那么∠2的度數(shù)()A.40° B.50° C.60° D.90°5.如果解關于x的分式方程時出現(xiàn)增根,那么m的值為A.-2 B.2 C.4 D.-46.在0,-2,5,,-0.3中,負數(shù)的個數(shù)是().A.1 B.2 C.3 D.47.如圖,在平面直角坐標系中,等腰直角三角形ABC的頂點A、B分別在x軸、y軸的正半軸上,∠ABC=90°,CA⊥x軸,點C在函數(shù)y=(x>0)的圖象上,若AB=2,則k的值為()A.4 B.2 C.2 D.8.對于實數(shù)x,我們規(guī)定表示不大于x的最大整數(shù),例如,,,若,則x的取值可以是()A.40 B.45 C.51 D.569.如圖,在網格中,小正方形的邊長均為1,點A,B,C都在格點上,則∠ABC的正切值是()A. B.2 C. D.10.如圖,PA和PB是⊙O的切線,點A和B是切點,AC是⊙O的直徑,已知∠P=40°,則∠ACB的大小是()A.60° B.65° C.70° D.75°二、填空題(本大題共6個小題,每小題3分,共18分)11.不等式的解集是________________12.一組數(shù)據(jù)4,3,5,x,4,5的眾數(shù)和中位數(shù)都是4,則x=_____.13.菱形ABCD中,∠A=60°,AB=9,點P是菱形ABCD內一點,PB=PD=3,則AP的長為_____.14.一元二次方程有兩個不相等的實數(shù)根,則的取值范圍是________.15.用半徑為6cm,圓心角為120°的扇形圍成一個圓錐,則圓錐的底面圓半徑為_______cm.16.如圖,已知,要使,還需添加一個條件,則可以添加的條件是.(只寫一個即可,不需要添加輔助線)三、解答題(共8題,共72分)17.(8分)有這樣一個問題:探究函數(shù)y=﹣2x的圖象與性質.小東根據(jù)學習函數(shù)的經驗,對函數(shù)y=﹣2x的圖象與性質進行了探究.下面是小東的探究過程,請補充完整:(1)函數(shù)y=﹣2x的自變量x的取值范圍是_______;(2)如表是y與x的幾組對應值x…﹣4﹣3.5﹣3﹣2﹣101233.54…y…﹣﹣0﹣﹣m…則m的值為_______;(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;(4)觀察圖象,寫出該函數(shù)的兩條性質________.18.(8分)如圖,輪船從點A處出發(fā),先航行至位于點A的南偏西15°且點A相距100km的點B處,再航行至位于點A的南偏東75°且與點B相距200km的點C處.(1)求點C與點A的距離(精確到1km);(2)確定點C相對于點A的方向.(參考數(shù)據(jù):2≈1.41419.(8分)如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運動,連接AP,將線段AP繞點P順時針旋轉90°得線段PQ.(1)當點Q落到AD上時,∠PAB=____°,PA=_____,長為_____;(2)當AP⊥BD時,記此時點P為P0,點Q為Q0,移動點P的位置,求∠QQ0D的大??;(3)在點P運動中,當以點Q為圓心,BP為半徑的圓與直線BD相切時,求BP的長度;(4)點P在線段BD上,由B向D運動過程(包含B、D兩點)中,求CQ的取值范圍,直接寫出結果.20.(8分)某企業(yè)信息部進行市場調研發(fā)現(xiàn):信息一:如果單獨投資A種產品,所獲利潤yA(萬元)與投資金額x(萬元)之間存在某種關系的部分對應值如下表:x(萬元)122.535yA(萬元)0.40.811.22信息二:如果單獨投資B種產品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關系:yB=ax2+bx,且投資2萬元時獲利潤2.4萬元,當投資4萬元時,可獲利潤3.2萬元.(1)求出yB與x的函數(shù)關系式;(2)從所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中確定哪種函數(shù)能表示yA與x之間的關系,并求出yA與x的函數(shù)關系式;(3)如果企業(yè)同時對A、B兩種產品共投資15萬元,請設計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?21.(8分)解不等式組:并把解集在數(shù)軸上表示出來.22.(10分)如圖,在矩形ABCD中,E是邊BC上的點,AE=BC,DF⊥AE,垂足為F,連接DE.求證:AB=DF.23.(12分)已知:如圖,點E是正方形ABCD的邊CD上一點,點F是CB的延長線上一點,且DE=BF.求證:EA⊥AF.24.已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.如圖,已知折痕與邊BC交于點O,連接AP、OP、OA.(1)求證:;(2)若△OCP與△PDA的面積比為1:4,求邊AB的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:根據(jù)主視圖是從正面看得到的圖形,可得答案.解:從正面看第一層三個小正方形,第二層左邊一個小正方形,右邊一個小正方形.故選C.考點:簡單組合體的三視圖.2、C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以點B為圓心,BC長為半徑畫弧,交腰AC于點E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故選C.點睛:本題考查了等腰三角形的性質,當?shù)妊切蔚牡捉菍嗟葧r其頂角也相等,難度不大.3、D【解析】
根據(jù)統(tǒng)計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.【詳解】解:根據(jù)統(tǒng)計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,A、袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球的概率為,不符合題意;B、擲一枚質地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)的概率為,不符合題意;C、先后兩次擲一枚質地均勻的硬幣,兩次都出現(xiàn)反面的概率為,不符合題意;D、先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過9的概率為,符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.4、B【解析】分析:根據(jù)“平行線的性質、平角的定義和垂直的定義”進行分析計算即可.詳解:∵AB⊥BC,∴∠ABC=90°,∵點B在直線b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°-∠1-90°=50°,∵a∥b,∴∠2=∠3=50°.故選B.點睛:熟悉“平行線的性質、平角的定義和垂直的定義”是正確解答本題的關鍵.5、D【解析】
,去分母,方程兩邊同時乘以(x﹣1),得:m+1x=x﹣1,由分母可知,分式方程的增根可能是1.當x=1時,m+4=1﹣1,m=﹣4,故選D.6、B【解析】
根據(jù)負數(shù)的定義判斷即可【詳解】解:根據(jù)負數(shù)的定義可知,這一組數(shù)中,負數(shù)有兩個,即-2和-0.1.故選B.7、A【解析】【分析】作BD⊥AC于D,如圖,先利用等腰直角三角形的性質得到AC=AB=2,BD=AD=CD=,再利用AC⊥x軸得到C(,2),然后根據(jù)反比例函數(shù)圖象上點的坐標特征計算k的值.【詳解】作BD⊥AC于D,如圖,∵△ABC為等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x軸,∴C(,2),把C(,2)代入y=得k=×2=4,故選A.【點睛】本題考查了等腰直角三角形的性質以及反比例函數(shù)圖象上點的坐標特征,熟知反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k是解題的關鍵.8、C【解析】
解:根據(jù)定義,得∴解得:.故選C.9、A【解析】分析:連接AC,根據(jù)勾股定理求出AC、BC、AB的長,根據(jù)勾股定理的逆定理得到△ABC是直角三角形,根據(jù)正切的定義計算即可.詳解:連接AC,
由網格特點和勾股定理可知,
AC=,AC2+AB2=10,BC2=10,
∴AC2+AB2=BC2,
∴△ABC是直角三角形,
∴tan∠ABC=.點睛:考查的是銳角三角函數(shù)的定義、勾股定理及其逆定理的應用,熟記銳角三角函數(shù)的定義、掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形是解題的關鍵.10、C【解析】試題分析:連接OB,根據(jù)PA、PB為切線可得:∠OAP=∠OBP=90°,根據(jù)四邊形AOBP的內角和定理可得∠AOB=140°,∵OC=OB,則∠C=∠OBC,根據(jù)∠AOB為△OBC的外角可得:∠ACB=140°÷2=70°.考點:切線的性質、三角形外角的性質、圓的基本性質.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
首先去分母進而解出不等式即可.【詳解】去分母得,1-2x>15移項得,-2x>15-1合并同類項得,-2x>14系數(shù)化為1,得x<-7.故答案為x<-7.【點睛】此題考查了解一元一次不等式,解不等式要依據(jù)不等式的基本性質:(1)不等式的兩邊同時加上或減去同一個數(shù)或整式不等號的方向不變;(2)不等式的兩邊同時乘以或除以同一個正數(shù)不等號的方向不變;(3)不等式的兩邊同時乘以或除以同一個負數(shù)不等號的方向改變.12、1【解析】
一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù),由此可得出答案.【詳解】∵一組數(shù)據(jù)1,3,5,x,1,5的眾數(shù)和中位數(shù)都是1,∴x=1,故答案為1.【點睛】本題考查了眾數(shù)的知識,解答本題的關鍵是掌握眾數(shù)的定義.13、3或6【解析】
分成P在OA上和P在OC上兩種情況進行討論,根據(jù)△ABD是等邊三角形,即可求得OA的長度,在直角△OBP中利用勾股定理求得OP的長,則AP即可求得.【詳解】設AC和BE相交于點O.當P在OA上時,∵AB=AD,∠A=60°,∴△ABD是等邊三角形,∴BD=AB=9,OB=OD=BD=.則AO=.在直角△OBP中,OP=.則AP=OA-OP-;當P在OC上時,AP=OA+OP=.故答案是:3或6.【點睛】本題考查了菱形的性質,注意到P在AC上,應分兩種情況進行討論是解題的關鍵.14、且【解析】
根據(jù)一元二次方程的根與判別式△的關系,結合一元二次方程的定義解答即可.【詳解】由題意可得,1?k≠0,△=4+4(1?k)>0,∴k<2且k≠1.故答案為k<2且k≠1.【點睛】本題主要考查了一元二次方程的根的判別式的應用,解題中要注意不要漏掉對二次項系數(shù)1-k≠0的考慮.15、1.【解析】
解:設圓錐的底面圓半徑為r,根據(jù)題意得1πr=,解得r=1,即圓錐的底面圓半徑為1cm.故答案為:1.【點睛】本題考查圓錐的計算,掌握公式正確計算是解題關鍵.16、可添∠ABD=∠CBD或AD=CD.【解析】
由AB=BC結合圖形可知這兩個三角形有兩組邊對應相等,添加一組邊利用SSS證明全等,也可以添加一對夾角相等,利用SAS證明全等,據(jù)此即可得答案.【詳解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS),故答案為∠ABD=∠CBD或AD=CD.【點睛】本題考查了三角形全等的判定,結合圖形與已知條件靈活應用全等三角形的判定方法是解題的關鍵.熟記全等三角形的判定方法有:SSS,SAS,ASA,AAS.三、解答題(共8題,共72分)17、(1)任意實數(shù);(2);(3)見解析;(4)①當x<﹣2時,y隨x的增大而增大;②當x>2時,y隨x的增大而增大.【解析】
(1)沒有限定要求,所以x為任意實數(shù),(2)把x=3代入函數(shù)解析式即可,(3)描點,連線即可解題,(4)看圖確定極點坐標,即可找到增減區(qū)間.【詳解】解:(1)函數(shù)y=﹣2x的自變量x的取值范圍是任意實數(shù);故答案為任意實數(shù);(2)把x=3代入y=﹣2x得,y=﹣;故答案為﹣;(3)如圖所示;(4)根據(jù)圖象得,①當x<﹣2時,y隨x的增大而增大;②當x>2時,y隨x的增大而增大.故答案為①當x<﹣2時,y隨x的增大而增大;②當x>2時,y隨x的增大而增大.【點睛】本題考查了函數(shù)的圖像和性質,屬于簡單題,熟悉函數(shù)的圖像和概念是解題關鍵.18、(1)173;(2)點C位于點A的南偏東75°方向.【解析】試題分析:(1)作輔助線,過點A作AD⊥BC于點D,構造直角三角形,解直角三角形即可.(2)利用勾股定理的逆定理,判定△ABC為直角三角形;然后根據(jù)方向角的定義,即可確定點C相對于點A的方向.試題解析:解:(1)如答圖,過點A作AD⊥BC于點D.由圖得,∠ABC=75°﹣10°=60°.在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=503.∴CD=BC﹣BD=200﹣50=1.在Rt△ACD中,由勾股定理得:AC=AD答:點C與點A的距離約為173km.(2)在△ABC中,∵AB2+AC2=1002+(1003)2=40000,BC2=2002=40000,∴AB2+AC2=BC2.∴∠BAC=90°.∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:點C位于點A的南偏東75°方向.考點:1.解直角三角形的應用(方向角問題);2.銳角三角函數(shù)定義;3.特殊角的三角函數(shù)值;4.勾股定理和逆定理.19、(1)45,,π;(2)滿足條件的∠QQ0D為45°或135°;(3)BP的長為或;(4)≤CQ≤7.【解析】
(1)由已知,可知△APQ為等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的長度;(2)分點Q在BD上方和下方的情況討論求解即可.(3)分別討論點Q在BD上方和下方的情況,利用切線性質,在由(2)用BP0表示BP,由射影定理計算即可;(4)由(2)可知,點Q在過點Qo,且與BD夾角為45°的線段EF上運動,有圖形可知,當點Q運動到點E時,CQ最長為7,再由垂線段最短,應用面積法求CQ最小值.【詳解】解:(1)如圖,過點P做PE⊥AD于點E由已知,AP=PQ,∠APQ=90°∴△APQ為等腰直角三角形∴∠PAQ=∠PAB=45°設PE=x,則AE=x,DE=4﹣x∵PE∥AB∴△DEP∽△DAB∴=∴=解得x=∴PA=PE=∴弧AQ的長為?2π?=π.故答案為45,,π.(2)如圖,過點Q做QF⊥BD于點F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.當點Q在BD的右下方時,同理可得∠PQ0Q=45°,此時∠QQ0D=135°,綜上所述,滿足條件的∠QQ0D為45°或135°.(3)如圖當點Q直線BD上方,當以點Q為圓心,BP為半徑的圓與直線BD相切時過點Q做QF⊥BD于點F,則QF=BP由(2)可知,PP0=BP∴BP0=BP∵AB=3,AD=4∴BD=5∵△ABP0∽△DBA∴AB2=BP0?BD∴9=BP×5∴BP=同理,當點Q位于BD下方時,可求得BP=故BP的長為或(4)由(2)可知∠QQ0D=45°則如圖,點Q在過點Q0,且與BD夾角為45°的線段EF上運動,當點P與點B重合時,點Q與點F重合,此時,CF=4﹣3=1當點P與點D重合時,點Q與點E重合,此時,CE=4+3=7∴EF===5過點C做CH⊥EF于點H由面積法可知CH===∴CQ的取值范圍為:≤CQ≤7【點睛】本題是幾何綜合題,考查了三角形全等、勾股定理、切線性質以及三角形相似的相關知識,應用了分類討論和數(shù)形結合的數(shù)學思想.20、(1)yB=-0.2x2+1.6x(2)一次函數(shù),yA=0.4x(3)該企業(yè)投資A產品12萬元,投資B產品3萬元,可獲得最大利潤7.8萬元【解析】
(1)用待定系數(shù)法將坐標(2,2.4)(4,3.2)代入函數(shù)關系式y(tǒng)B=ax2+bx求解即可;(2)根據(jù)表格中對應的關系可以確定為一次函數(shù),通過待定系數(shù)法求得函數(shù)表達式;(3)根據(jù)等量關系“總利潤=投資A產品所獲利潤+投資B產品所獲利潤”列出函數(shù)關系式求得最大值【詳解】解:(1)yB=-0.2x2+1.6x,(2)一次函數(shù),yA=0.4x,(3)設投資B產品x萬元,投資A產品(15-x)萬元,投資兩種產品共獲利W萬元,則W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,∴當x=3時,W最大值=7.8,答:該企業(yè)投資A產品12萬元,投資B產品3萬元,可獲得最大利潤7.8萬元.21、不等式組的解集為﹣7<x≤1,將解集表示在數(shù)軸上表示見解析.【解析】試題分析:先解不等式組中的每一個不等式,再根據(jù)大大取較大,小小取較小,大小小大取中間,大大小小無解,把它們的解集用一條不等式表示出來.試題解析:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在數(shù)軸上表示為:.考點:解一元一次不等式組;在數(shù)軸上表示不等式的解集.點睛:分別求出各不等式的解集,再求出其公共解集即可.不等式組的解集在數(shù)軸上表示的方法:把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.22、詳見解析.【解析】
根據(jù)矩形性質推出BC=AD=AE,AD∥BC,根據(jù)平行線性質推出∠DAE=∠AEB,根據(jù)AAS證出△ABE≌△DFA即可.【詳解】證明:在矩形ABCD中∵BC=AD,AD∥BC,∠B=90°,
∴∠DAF=∠AEB,
∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版城市軌道交通施工技術負責人及施工員勞務服務協(xié)議3篇
- 二零二五年倉庫安全管理責任協(xié)議(倉管員崗位)3篇
- 二零二五版2025年度駕校場地停車場改造施工服務協(xié)議3篇
- 2025年度場監(jiān)管法律事務合作協(xié)議4篇
- 二零二五年金融財務顧問項目合作協(xié)議2篇
- 2025年度新能源電池組裝與測試合作協(xié)議4篇
- 2025屆河南省鶴壁市重點達標名校中考一模生物試題含解析2
- 2025版農田水利工程質量檢測與驗收合同3篇
- 2025年度工業(yè)廠房改造項目投資合作合同范文4篇
- 2025年度碼頭集裝箱堆場租賃與維護服務協(xié)議4篇
- 割接方案的要點、難點及采取的相應措施
- 2025年副護士長競聘演講稿(3篇)
- 2025至2031年中國臺式燃氣灶行業(yè)投資前景及策略咨詢研究報告
- 原發(fā)性腎病綜合征護理
- 第三章第一節(jié)《多變的天氣》說課稿2023-2024學年人教版地理七年級上冊
- 2025年中國電科集團春季招聘高頻重點提升(共500題)附帶答案詳解
- 2025年度建筑施工現(xiàn)場安全管理合同2篇
- 建筑垃圾回收利用標準方案
- 2024年考研英語一閱讀理解80篇解析
- 樣板間合作協(xié)議
- 福建省廈門市2023-2024學年高二上學期期末考試語文試題(解析版)
評論
0/150
提交評論