版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆江蘇省南通市啟東市高二上數(shù)學期末聯(lián)考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“,使得”的否定形式是A.,使得 B.,使得C.,使得 D.,使得2.已知曲線的方程為,則下列說法正確的是()①曲線關(guān)于坐標原點對稱;②曲線是一個橢圓;③曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積.A.① B.①②C.③ D.①③3.某班新學期開學統(tǒng)計新冠疫苗接種情況,已知該班有學生45人,其中未完成疫苗接種的有5人,則該班同學的疫苗接種完成率為()A. B.C. D.4.變量與的數(shù)據(jù)如表所示,其中缺少了一個數(shù)值,已知關(guān)于的線性回歸方程為,則缺少的數(shù)值為()22232425262324▲2628A.24 B.25C.25.5 D.265.若是雙曲線的左右焦點,是坐標原點.過作的一條漸近線的垂線,垂足為,若,則該雙曲線的離心率為()A. B.C. D.6.如圖所示,在平行六面體中,,,,點是的中點,點是上的點,且,則向量可表示為()A. B.C. D.7.某雙曲線的一條漸近方程為,且焦點為,則該雙曲線的方程是()A. B.C. D.8.已知三棱錐O-ABC,點M,N分別為AB,OC的中點,且,用表示,則等于()A. B.C. D.9.已知雙曲線C:的右焦點為,一條漸近線被圓截得的弦長為2b,則雙曲線C的離心率為()A. B.C.2 D.10.曲線在處的切線的斜率為()A.-1 B.1C.2 D.311.已知點O為坐標原點,拋物線C:的焦點為F,點T在拋物線C的準線上,線段FT與拋物線C的交點為W,,則()A.1 B.C. D.12.已知圓,過點P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,若O為坐標原點,則最大值為()A.3 B.4C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.點到拋物線上的點的距離的最小值為________.14.若直線與直線平行,且原點到直線的距離為,則直線的方程為____________.15.命題“,”是真命題,則的取值范圍是________16.已知命題:平面上一矩形ABCD的對角線AC與邊AB和AD所成角分別為,則,若把它推廣到空間長方體中,體對角線與平面,平面,平面所成的角分別為,則可以類比得到的結(jié)論為___________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,直線,直線l與圓C相交于P,Q兩點(1)求的最小值;(2)當?shù)拿娣e最大時,求直線l的方程18.(12分)兩個頂點、的坐標分別是、,邊、所在直線的斜率之積等于,頂點的軌跡記為.(1)求頂點的軌跡的方程;(2)若過點作直線與軌跡相交于、兩點,點恰為弦中點,求直線的方程;(3)已知點為軌跡的下頂點,若動點在軌跡上,求的最大值.19.(12分)已知拋物線的準線方程是.(Ⅰ)求拋物線的方程;(Ⅱ)設(shè)直線與拋物線相交于,兩點,為坐標原點,證明:.20.(12分)設(shè)F為橢圓的右焦點,過點的直線與橢圓C交于兩點.(1)若點B為橢圓C的上頂點,求直線的方程;(2)設(shè)直線的斜率分別為,,求證:為定值.21.(12分)在平面直角坐標系中,點到兩點的距離之和等于4,設(shè)點的軌跡為曲線(1)求曲線的方程;(2)設(shè)直線與交于兩點,為何值時?22.(10分)設(shè)函數(shù),其中,為自然對數(shù)的底數(shù).(1)討論單調(diào)性;(2)證明:當時,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】的否定是,的否定是,的否定是.故選D【考點】全稱命題與特稱命題的否定【方法點睛】全稱命題的否定是特稱命題,特稱命題的否定是全稱命題.對含有存在(全稱)量詞的命題進行否定需要兩步操作:①將存在(全稱)量詞改成全稱(存在)量詞;②將結(jié)論加以否定2、D【解析】對于①在方程中換為,換為可判斷;對于②分析曲線的圖形是兩個拋物線的部分組成的可判斷;對于③在第一象限內(nèi),分析橢圓的圖形與曲線圖形的位置關(guān)系可判斷.【詳解】在曲線的方程中,換為,換為,方程不變,故曲線關(guān)于坐標原點對稱所以①正確,當時,曲線的方程化為,此時當時,曲線的方程化為,此時所以曲線圖形是兩個拋物線的部分組成的,不是橢圓,故②不正確.當,時,設(shè),設(shè),則,(當且僅當或時等號成立)所以在第一象限內(nèi),橢圓的圖形在曲線的上方.根據(jù)曲線和橢圓的的對稱性可得橢圓的圖形在曲線的外部(四個頂點在曲線上)所以曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積,故③正確.故選:D3、D【解析】利用古典概型的概率求解.【詳解】該班同學的疫苗接種完成率為故選:D4、A【解析】可設(shè)出缺少的數(shù)值,利用表中的數(shù)據(jù),分別表示出、,將樣本中心點帶入回歸方程,即可求得參數(shù).【詳解】設(shè)缺少的數(shù)值為,則,,因為回歸直線方程經(jīng)過樣本點的中心,所以,解得.故選:A5、D【解析】根據(jù)已知條件,找出,的齊次關(guān)系式即可得到雙曲線的離心率.【詳解】由題意得,,,在中,,因,故,在,由余弦定理得,即,計算得,故.故選:D.【點睛】雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個條件得到關(guān)于a,b,c的齊次式,結(jié)合轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)6、D【解析】根據(jù)空間向量加法和減法的運算法則,以及向量的數(shù)乘運算即可求解.【詳解】解:因為在平行六面體中,,,,點是的中點,點是上的點,且,所以,故選:D.7、D【解析】設(shè)雙曲線的方程為,利用焦點為求出的值即可.【詳解】因為雙曲線的一條漸近方程為,且焦點為,所以可設(shè)雙曲線的方程為,則,,所以該雙曲線方程為.故選:D.8、D【解析】根據(jù)空間向量的加法、減法和數(shù)乘運算可得結(jié)果.【詳解】.故選:D9、A【解析】求出圓心到漸近線的距離,根據(jù)弦長建立關(guān)系即可求解.【詳解】雙曲線的漸近線方程為,即,則點到漸近線的距離為,因為弦長為,圓半徑為,所以,即,因為,所以,則雙曲線的離心率為.故選:A.10、D【解析】先求解出導函數(shù),然后代入到導函數(shù)中,所求導數(shù)值即為切線斜率.【詳解】因為,所以,所以切線的斜率為.故選:D.11、B【解析】根據(jù)平面向量共線的性質(zhì),結(jié)合拋物線的定義進行求解即可.【詳解】由已知得:,該拋物線的準線方程為:,所以設(shè),因為,所以,由拋物線的定義可知:,故選:B12、C【解析】由題意,點P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,進而可得,所以點P的軌跡為以C為圓心,半徑為3的圓,從而即可求解.【詳解】解:由題意,圓,所以圓C是以為圓心,半徑為5的圓,因為過點P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,所以點P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,所以由弦長公式有,所以點P的軌跡為以C為圓心,半徑為3的圓,所以,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)出拋物線上點的坐標,利用兩點間距離公式,配方求出最小值.【詳解】設(shè)拋物線上的點坐標,則,當時,取得最小值,且最小值為.故答案為:14、【解析】可設(shè)直線的方程為,利用點到直線的距離公式求得,即可得解.【詳解】可設(shè)直線的方程為,即,則原點到直線的距離為,解得,所以直線的方程為.故答案為:.15、【解析】依題意可得,是真命題,參變分離得到在上有解,再利用構(gòu)造函數(shù)利用函數(shù)的單調(diào)性計算可得.【詳解】,等價于在上有解設(shè),,則在上單調(diào)遞減,在上單調(diào)遞增,又,,所以,即故答案為:16、【解析】先由線面角的定義得到,再計算的值即可得到結(jié)論【詳解】在長方體中,連接,在長方體中,平面,所以對角線與平面所成的角為,對角線與平面所成的角為,對角線與平面所成的角為,顯然,,,所以,,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)4;(2)或.【解析】(1)過定點D(4,2),當CD⊥l時,|PQ|最??;(2),當時,△CPQ面積最大,此時△CPQ為等腰直角三角形,圓心到直線l的距離,據(jù)此即可求出m.【小問1詳解】由,得,由,∴直線l過定點D(4,2),∵,∴在圓C內(nèi)部,∴直線和l與圓C相交,當CD⊥l時,|PQ|最小,;【小問2詳解】∵,∴當時,△CPQ面積最大,此時△CPQ為等腰直角三角形,故圓心到直線l的距離,∴,解得,∴此時l的方程為:或.18、(1)(2)(3)【解析】(1)先表示出邊、所在直線的斜率,然后根據(jù)兩條直線的斜率關(guān)系建立方程即可;(2)聯(lián)立直線與橢圓方程,利用韋達定理和中點坐標公式即可求出直線的斜率;(3)先表示出,然后利用橢圓的性質(zhì),進而確定的最大值.【小問1詳解】設(shè)點,則由可得:化簡得:故頂點的軌跡的方程:【小問2詳解】當直線的斜率不存在時,顯然不符合題意;當直線的斜率存在時,設(shè)直線的方程為聯(lián)立方程組消去可得:設(shè)直線與軌跡的交點,的坐標分別為由韋達定理得:點為、兩點的中點,可得:,即則有:解得:故求直線的方程為:【小問3詳解】由(1)可知,設(shè)則有:又點滿足,即由橢圓的性質(zhì)得:所以當時,19、(Ⅰ)(Ⅱ)詳見解析【解析】(Ⅰ)利用排趨性的準線方程求出p,即可求解拋物線的方程;(Ⅱ)直線y=k(x-2)(k≠0)與拋物線聯(lián)立,通過韋達定理求解直線的斜率關(guān)系即可證明OM⊥ON試題解析:(Ⅰ)解:因為拋物線的準線方程為,所以,解得,所以拋物線的方程為.(Ⅱ)證明:設(shè),.將代入,消去整理得.所以.由,,兩式相乘,得,注意到,異號,所以.所以直線與直線的斜率之積為,即.考點:直線與拋物線的位置關(guān)系;拋物線的標準方程20、(1);(2)證明見解析.【解析】(1)求出的直線方程,結(jié)合橢圓方程可求的坐標,從而可求的直線方程;(2)設(shè),直線(或),則可用兩點的坐標表示或,聯(lián)立直線的方程和橢圓的方程,消元后利用韋達定理可化簡前者從而得到要證明的結(jié)論【詳解】(1)若B為橢圓的上頂點,則.又過點,故直線由可得,解得即點,又,故直線;(2)設(shè),方法一:設(shè)直線,代入橢圓方程可得:所以,故,又均不為0,故,即為定值方法二:設(shè)直線,代入橢圓方程可得:所以所以,即,所以,即為定值方法三:設(shè)直線,代入橢圓方程可得:所以,所以所以,把代入得方法四:設(shè)直線,代入橢圓的方程可得,則所以.因為,代入得.【點睛】思路點睛:直線與圓錐曲線的位置關(guān)系中的定點、定值、最值問題,一般可通過聯(lián)立方程組并消元得到關(guān)于或的一元二次方程,再把要求解的目標代數(shù)式化為關(guān)于兩個的交點橫坐標或縱坐標的關(guān)系式,該關(guān)系中含有或,最后利用韋達定理把關(guān)系式轉(zhuǎn)化為若干變量的方程(或函數(shù)),從而可求定點、定值、最值問題.21、(1);(2).【解析】(1)由題意可得:點的軌跡為橢圓,設(shè)標準方程為:,則,,,解出可得橢圓的標準方程(2)設(shè),,直線方程與橢圓聯(lián)立,化為:,恒成立,由,可得,把根與系數(shù)的關(guān)系代入解得【詳解】解:(1)由題意可得:點的軌跡為橢圓,設(shè)標準方程為:,則,,,可得橢圓的標準方程為:(2)設(shè),,聯(lián)立,化為:,恒成立,,,,,,解得.滿足當時,能使【點睛】本題考查了橢圓的標準方程及其性質(zhì)、直線與橢圓相交弦長問題、數(shù)量積運算性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計算能力,屬于難題22、(1)答案見解析(2)答案見解析【解析】(1)求導數(shù),分和,兩種情況
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度股權(quán)質(zhì)押資產(chǎn)重組合同示范文本3篇
- 二零二五年度鋼材倉儲物流服務(wù)合同9篇
- 二零二五年度路燈照明設(shè)施安全檢測合同樣本2篇
- 二零二五年度:勞動合同法實務(wù)操作與案例分析合同3篇
- 二零二五年度船舶建造與設(shè)備安裝合同2篇
- 二零二五年度農(nóng)產(chǎn)品質(zhì)量檢測合同范本3篇
- 二零二五年度安置房買賣合同電子支付與結(jié)算規(guī)范3篇
- 3、2025年度綠色出行接送機服務(wù)合同范本2篇
- 二零二五年度文化創(chuàng)意產(chǎn)業(yè)合作開發(fā)合同范本3篇
- 家里陪護合同(2篇)
- 2024-2025學年五年級科學上冊第二單元《地球表面的變化》測試卷(教科版)
- 小區(qū)物業(yè)服務(wù)投標方案(技術(shù)標)
- 2024-2030年中國光電干擾一體設(shè)備行業(yè)發(fā)展現(xiàn)狀與前景預測分析研究報告
- 2025屆高考數(shù)學一輪復習建議-函數(shù)與導數(shù)專題講座課件
- 心電圖基本知識
- 中煤電力有限公司招聘筆試題庫2024
- 消防接警員應知應會考試題庫大全-上(單選、多選題)
- 2024風電場在役葉片維修全過程質(zhì)量控制技術(shù)要求
- 湖南省岳陽市岳陽樓區(qū)2023-2024學年七年級下學期期末數(shù)學試題(解析版)
- 自適應噪聲抵消技術(shù)的研究
- 山東省臨沂市羅莊區(qū)2024屆中考聯(lián)考化學試題含解析
評論
0/150
提交評論