版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南省鄭州市高新區(qū)一中2025屆高一數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知為鈍角,且,則()A. B.C. D.2.將函數(shù)y=cosx+sinx(x∈R)的圖象向左平移m(m>0)個單位長度后,所得到的圖象關(guān)于y軸對稱,則m的最小值是()A. B.C. D.3.為了得到函數(shù)的圖象,只需將函數(shù)圖象上所有的點A.向左平行移動個單位長度 B.向右平行移動個單位長度C.向左平行移動個單位長度 D.向右平行移動個單位長度4.“”是“”的()條件A.充分不必要 B.必要不充分C.充要 D.即不充分也不必要5.設(shè)為所在平面內(nèi)一點,若,則下列關(guān)系中正確的是A. B.C. D.6.若,,則的終邊在()A.第一象限 B.第二象限C.第三象限 D.第四象限7.下列命題正確的是()A.若,則B.若,則C.若,則D.若,則8.命題“,有”的否定是()A.,使 B.,有C.,使 D.,使9.的外接圓的圓心為O,半徑為1,若,且,則的面積為()A. B.C. D.110.已知定義在R上的函數(shù)是奇函數(shù)且滿足,,數(shù)列滿足,且,(其中為的前n項和).則A.3 B.C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.用表示函數(shù)在閉區(qū)間上的最大值.若正數(shù)滿足,則的最大值為__________12.函數(shù)的值域為_____________13.設(shè)是定義在上的函數(shù),若存在兩個不等實數(shù),使得,則稱函數(shù)具有性質(zhì),那么下列函數(shù):①;②;③;具有性質(zhì)的函數(shù)的個數(shù)為____________14.已知的圖象的對稱軸為_________________15.設(shè)函數(shù),若不存在,使得與同時成立,則實數(shù)a的取值范圍是________.16.若f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=,若方程f(x)=kx恰有3個不同的根,則實數(shù)k的取值范圍是______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),且(1)求f(x)的解析式;(2)判斷f(x)在區(qū)間(0,1)上的單調(diào)性,并用定義法證明18.已知函數(shù)(1)若為偶函數(shù),求;(2)若命題“,”為假命題,求實數(shù)的取值范圍19.已知集合,.(1)當(dāng)時,求;(2)若,求實數(shù)的取值范圍.20.已知函數(shù),且.(1)求的解析式,判斷并證明它的奇偶性;(2)求證:函數(shù)在上單調(diào)減函數(shù).21.對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱“局部中心函數(shù)”.(1)已知二次函數(shù)(),試判斷是否為“局部中心函數(shù)”,并說明理由;(2)若是定義域為上的“局部中心函數(shù)”,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】先求出,再利用和角的余弦公式計算求解.【詳解】∵為鈍角,且,∴,∴故選:C【點睛】本題主要考查同角的平方關(guān)系,考查和角的余弦公式的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.2、A【解析】由題意結(jié)合輔助角公式可得,進(jìn)而可得g(x)=2sin,由三角函數(shù)的性質(zhì)可得,化簡即可得解.【詳解】設(shè)f(x)=cosx+sinx=2sin,向左平移m個單位長度得g(x)=2sin,∵g(x)的圖象關(guān)于y軸對稱,∴,∴m=,由m>0可得m的最小值為.故選:A.【點睛】本題考查了輔助角公式及三角函數(shù)圖象與性質(zhì)的應(yīng)用,考查了運(yùn)算求解能力,屬于基礎(chǔ)題.3、B【解析】根據(jù)誘導(dǎo)公式將函數(shù)變?yōu)檎液瘮?shù),再減去得到.【詳解】函數(shù)又故將函數(shù)圖像上的點向右平移個單位得到故答案為:B.【點睛】本題考查的是三角函數(shù)的平移問題,首先保證三角函數(shù)同名,不是同名通過誘導(dǎo)公式化為同名,在平移中符合左加右減的原則,在寫解析式時保證要將x的系數(shù)提出來,針對x本身進(jìn)行加減和伸縮.4、B【解析】根據(jù)充分條件和必要條件的概念,結(jié)合題意,即可得到結(jié)果.【詳解】因為,所以“”是“”的必要不充分條件.故選:B.5、A【解析】∵∴?=3(?);∴=?.故選A.6、D【解析】根據(jù)同角三角函數(shù)關(guān)系式,化簡,結(jié)合三角函數(shù)在各象限的符號,即可判斷的終邊所在的象限.【詳解】根據(jù)同角三角函數(shù)關(guān)系式而所以故的終邊在第四象限故選:D【點睛】本題考查了根據(jù)三角函數(shù)符號判斷角所在的象限,屬于基礎(chǔ)題.7、D【解析】由不等式性質(zhì)依次判斷各個選項即可.【詳解】對于A,若,由可得:,A錯誤;對于B,若,則,此時未必成立,B錯誤;對于C,當(dāng)時,,C錯誤;對于D,當(dāng)時,由不等式性質(zhì)知:,D正確.故選:D.8、D【解析】全稱命題的否定:將任意改存在并否定原結(jié)論,即可知正確選項.【詳解】由全稱命題的否定為特稱命題,∴原命題的否定為.故選:D9、B【解析】由,利用向量加法的幾何意義得出△ABC是以A為直角的直角三角形,又|,從而可求|AC|,|AB|的值,利用三角形面積公式即可得解【詳解】由于,由向量加法的幾何意義,O為邊BC中點,∵△ABC的外接圓的圓心為O,半徑為1,∴三角形應(yīng)該是以BC邊為斜邊的直角三角形,∠BAC=,斜邊BC=2,又∵∴|AC|=1,|AB|=,∴S△ABC=,故選B.【點睛】本題主要考查了平面向量及應(yīng)用,三角形面積的求法,屬于基礎(chǔ)題10、A【解析】由奇函數(shù)滿足可知該函數(shù)是周期為的奇函數(shù),由遞推關(guān)系可得:,兩式做差有:,即,即數(shù)列構(gòu)成首項為,公比為的等比數(shù)列,故:,綜上有:,,則:.本題選擇A選項.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】對分類討論,利用正弦函數(shù)的圖象求出和,代入,解出的范圍,即可得解.【詳解】當(dāng),即時,,,因為,所以不成立;當(dāng),即時,,,不滿足;當(dāng),即時,,,由得,得,得;當(dāng),即時,,,由得,得,得,得;當(dāng),即時,,,不滿足;當(dāng),即時,,,不滿足.綜上所述:.所以得最大值為故答案為:【點睛】關(guān)鍵點點睛:對分類討論,利用正弦函數(shù)的圖象求出和是解題關(guān)鍵.12、【解析】利用二倍角余弦公式可得令,結(jié)合二次函數(shù)的圖象與性質(zhì)得到結(jié)果.【詳解】由題意得:令,則∵在上單調(diào)遞減,∴的值域為:故答案為:【點睛】本題給出含有三角函數(shù)式的“類二次”函數(shù),求函數(shù)的值域.著重考查了三角函數(shù)的最值和二次函數(shù)在閉區(qū)間上的值域等知識,屬于中檔題13、【解析】根據(jù)題意,找出存在的點,如果找不出則需證明:不存在,,使得【詳解】①因為函數(shù)是奇函數(shù),可找關(guān)于原點對稱的點,比如,存在;②假設(shè)存在不相等,,使得,即,得,矛盾,故不存在;③函數(shù)為偶函數(shù),,令,,則,存在故答案為:【點睛】關(guān)鍵點點睛:證明存在性命題,只需找到滿足條件的特殊值即可,反之需要證明不存在,一般考慮反證法,先假設(shè)存在,推出矛盾即可,屬于中檔題.14、【解析】根據(jù)誘導(dǎo)公式可得,然后用二倍角公式化簡,進(jìn)而可求.【詳解】因為所以,故對稱軸為.故答案為:15、.【解析】當(dāng)恒成立,不存在使得與同時成立,當(dāng)時,恒成立,則需時,恒成立,只需時,,對的對稱軸分類討論,即可求解.【詳解】若時,恒成立,不存使得與同時成立,則時,恒成立,即時,,對稱軸為,當(dāng)時,即,解得,當(dāng),即為拋物線頂點的縱坐標(biāo),,只需,.若恒成立,不存在使得與同時成立,綜上,的取值范圍是.故答案為:.【點睛】本題考查了二次函數(shù)和一次函數(shù)的圖像和性質(zhì),不等式恒成立和能成立問題的解法,考查分類討論和轉(zhuǎn)化化歸的思想方法,屬于較難題.16、[-,-)∪(,]【解析】利用周期與對稱性得出f(x)的函數(shù)圖象,根據(jù)交點個數(shù)列出不等式得出k的范圍【詳解】∵當(dāng)x>2時,f(x)=f(x-1),∴f(x)在(1,+∞)上是周期為1的函數(shù),作出y=f(x)的函數(shù)圖象如下:∵方程f(x)=kx恰有3個不同的根,∴y=f(x)與y=kx有三個交點,若k>0,則若k<0,由對稱性可知.故答案為[-,-)∪(,].【點睛】本題考查了函數(shù)零點與函數(shù)圖象的關(guān)系,函數(shù)周期與奇偶性的應(yīng)用,方程根的問題常轉(zhuǎn)化為函數(shù)圖象的交點問題,屬于中檔題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)f(x)在(0,1)上單調(diào)遞減,證明見解析.【解析】(1)根據(jù)即可求出a=b=1,從而得出;(2)容易判斷f(x)在區(qū)間(0,1)上單調(diào)遞減,根據(jù)減函數(shù)的定義證明:設(shè)x1,x2∈(0,1),并且x1<x2,然后作差,通分,得出,根據(jù)x1,x2∈(0,1),且x1<x2說明f(x1)>f(x2)即可【詳解】解:(1)∵;∴;解得a=1,b=1;∴;(2)f(x)在區(qū)間(0,1)上單調(diào)遞減,證明如下:設(shè)x1,x2∈(0,1),且x1<x2,則:=;∵x1,x2∈(0,1),且x1<x2;∴x1-x2<0,,;∴;∴f(x1)>f(x2);∴f(x)在(0,1)上單調(diào)遞減【點睛】本題考查減函數(shù)的定義,根據(jù)減函數(shù)的定義證明一個函數(shù)是減函數(shù)的方法和過程,清楚的單調(diào)性18、(1)(2)【解析】(1)根據(jù)偶函數(shù)的定義直接求解即可;(2)由題知命題“,”為真命題,進(jìn)而得對,且恒成立,再分離參數(shù)求解即可得的取值范圍是【小問1詳解】解:因為函數(shù)為偶函數(shù),所以,即,所以,即,所以.【小問2詳解】解:因為命題“,”為假命題,所以命題“,”為真命題,所以,對,且恒成立,所以,對,且恒成立,由對勾函數(shù)性質(zhì)知,函數(shù)在上單調(diào)遞增,所以,且,即實數(shù)的取值范圍是.19、(1);(2).【解析】(1)求出集合A和B,根據(jù)并集的計算方法計算即可;(2)求出,分B為空集和不為空集討論即可.【小問1詳解】,當(dāng)時,,∴;【小問2詳解】{或x>4},當(dāng)時,,,解得a<1;當(dāng)時,若,則解得.綜上,實數(shù)的取值范圍為.20、(1),是奇函數(shù)(2)證明見解析【解析】(1)將代入,求得,再由函數(shù)奇偶性的定義判斷即可;(2)利用函數(shù)單調(diào)性的定義證明即可.【詳解】解:(1)∴∴,∴是奇函數(shù)(2)設(shè),∵,,,∴,∴在上是單調(diào)減函數(shù).【點睛】本題考查函數(shù)解析式的求法,奇偶性的證法、單調(diào)性的證明,屬于中檔題.21、(1)為“局部中心函數(shù)”,理由詳見解題過程;(2)【解析】(1)判斷是否為“局部中心函數(shù)”,即判斷方程是否有解,若有解,則說明是“局部中心函數(shù)”,否則說明不是“局部中心函數(shù)”;(2)條件是定義域
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 如何拍攝培訓(xùn)課件
- 贛南衛(wèi)生健康職業(yè)學(xué)院《遙感原理及其應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 相互喂飯培訓(xùn)課件
- 贛東學(xué)院《經(jīng)濟(jì)社會系統(tǒng)仿真實踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 七年級道德與法治上冊第二單元友誼的天空第四課友誼與成長同行第1課時誤區(qū)警示新人教版
- 小學(xué)生頒獎?wù)n件背景
- 小學(xué)生傳統(tǒng)文化禮儀課件
- 《動能和勢能教學(xué)》課件
- 礦石運(yùn)輸與堆放技術(shù)
- 五年級數(shù)學(xué)(小數(shù)除法)計算題專項練習(xí)及答案匯編
- 光刻技術(shù)員工作總結(jié)
- 2024糖尿病酮癥酸中毒診斷和治療課件
- MOOC 組織學(xué)與胚胎學(xué)-華中科技大學(xué) 中國大學(xué)慕課答案
- 審計職業(yè)生涯規(guī)劃書
- 2024-2029年中國脊柱側(cè)彎支具行業(yè)市場現(xiàn)狀分析及競爭格局與投資發(fā)展研究報告
- 新媒體部門崗位配置人員架構(gòu)圖
- 統(tǒng)編版語文三年級 稻草人整本書閱讀推進(jìn)課課件
- 2023年中考語文二輪復(fù)習(xí):名著閱讀 真題練習(xí)題匯編(含答案解析)
- 《汽車驅(qū)動橋》汽車標(biāo)準(zhǔn)
- 磁異法探測海底纜線分解課件
- 投資的本質(zhì):巴菲特的12個投資宗旨
評論
0/150
提交評論