2025屆江蘇省南京市六合區(qū)程橋高級(jí)中學(xué)高二上數(shù)學(xué)期末綜合測(cè)試模擬試題含解析_第1頁(yè)
2025屆江蘇省南京市六合區(qū)程橋高級(jí)中學(xué)高二上數(shù)學(xué)期末綜合測(cè)試模擬試題含解析_第2頁(yè)
2025屆江蘇省南京市六合區(qū)程橋高級(jí)中學(xué)高二上數(shù)學(xué)期末綜合測(cè)試模擬試題含解析_第3頁(yè)
2025屆江蘇省南京市六合區(qū)程橋高級(jí)中學(xué)高二上數(shù)學(xué)期末綜合測(cè)試模擬試題含解析_第4頁(yè)
2025屆江蘇省南京市六合區(qū)程橋高級(jí)中學(xué)高二上數(shù)學(xué)期末綜合測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆江蘇省南京市六合區(qū)程橋高級(jí)中學(xué)高二上數(shù)學(xué)期末綜合測(cè)試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,則直線A1C1到平面ACD1的距離為()A.1 B.C. D.2.下圖是一個(gè)“雙曲狹縫”模型,直桿沿著與它不平行也不相交的軸旋轉(zhuǎn)時(shí)形成雙曲面,雙曲面的邊緣為雙曲線.已知該模型左、右兩側(cè)的兩段曲線(曲線AB與曲線CD)所在的雙曲線離心率為2,曲線AB與曲線CD中間最窄處間的距離為10cm,點(diǎn)A與點(diǎn)C,點(diǎn)B與點(diǎn)D均關(guān)于該雙曲線的對(duì)稱中心對(duì)稱,且|AB|=30cm,則|AD|=()A.10cm B.20cmC.25cm D.30cm3.在平行六面體ABCD﹣A1B1C1D1中,AC與BD的交點(diǎn)為M,設(shè)=,=,=,則=()A.++ B.+C.++ D.+4.已知圓C的方程為,點(diǎn)P在圓C上,O是坐標(biāo)原點(diǎn),則的最小值為()A.3 B.C. D.5.復(fù)數(shù)的共軛復(fù)數(shù)的虛部為()A. B.C. D.6.幾何學(xué)史上有一個(gè)著名的米勒問題:“設(shè)點(diǎn)、是銳角的一邊上的兩點(diǎn),試在邊上找一點(diǎn),使得最大的.”如圖,其結(jié)論是:點(diǎn)為過、兩點(diǎn)且和射線相切的圓的切點(diǎn).根據(jù)以上結(jié)論解決一下問題:在平面直角坐標(biāo)系中,給定兩點(diǎn),,點(diǎn)在軸上移動(dòng),當(dāng)取最大值時(shí),點(diǎn)的橫坐標(biāo)是()A.B.C.或D.或7.已知在一次降雨過程中,某地降雨量(單位:mm)與時(shí)間t(單位:min)的函數(shù)關(guān)系可表示為,則在時(shí)的瞬時(shí)降雨強(qiáng)度為()mm/min.A. B.C.20 D.4008.已知圓,則圓C關(guān)于直線對(duì)稱的圓的方程為()A. B.C. D.9.若點(diǎn)在橢圓上,則該橢圓的離心率為()A. B.C. D.10.雙曲線:的漸近線與圓:在第一、二象限分別交于點(diǎn)、,若點(diǎn)滿足(其中為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B.C. D.11.已知雙曲線C的離心率為,,是C的兩個(gè)焦點(diǎn),P為C上一點(diǎn),,若△的面積為,則雙曲線C的實(shí)軸長(zhǎng)為()A.1 B.2C.4 D.612.丹麥數(shù)學(xué)家琴生(Jensen)是19世紀(jì)對(duì)數(shù)學(xué)分析作出卓越貢獻(xiàn)的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)恒成立,則稱函數(shù)在區(qū)間內(nèi)為“凸函數(shù)”,則下列函數(shù)在其定義域內(nèi)是“凸函數(shù)”的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在上單調(diào)遞減,則的取值范圍是______.14.若一個(gè)球表面積為,則該球的半徑為____________15.拋物線的準(zhǔn)線方程是________16.已知等比數(shù)列滿足:,,,則公比______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,其中.(1)求的值;(2)設(shè)(其中、為正整數(shù)),求的值.18.(12分)在平面直角坐標(biāo)系中,圓C:,直線l:(1)若直線l與圓C相切于點(diǎn)N,求切點(diǎn)N的坐標(biāo);(2)若,直線l上有且僅有一點(diǎn)A滿足:過點(diǎn)A作圓C的兩條切線AP、AQ,切點(diǎn)分別為P,Q,且使得四邊形APCQ為正方形,求m的值19.(12分)已知是等差數(shù)列,是等比數(shù)列,且,,,.(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.20.(12分)已知,其中.(1)若,求在處的切線方程;(2)若是函數(shù)的極小值點(diǎn),求函數(shù)在區(qū)間上的最值;(3)討論函數(shù)的單調(diào)性.21.(12分)如圖,五邊形為東京奧運(yùn)會(huì)公路自行車比賽賽道平面設(shè)計(jì)圖,根據(jù)比賽需要,在賽道設(shè)計(jì)時(shí)需預(yù)留出,兩條服務(wù)通道(不考慮寬度),,,,,為賽道.現(xiàn)已知,,千米,千米(1)求服務(wù)通道的長(zhǎng)(2)在上述條件下,如何設(shè)計(jì)才能使折線賽道(即)的長(zhǎng)度最大,并求最大值22.(10分)如圖,四棱錐中,,且,(1)求證:平面平面;(2)若是等邊三角形,底面是邊長(zhǎng)為3的正方形,是中點(diǎn),求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】先證明點(diǎn)A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離,再建立空間直角坐標(biāo)系,利用向量法求解.【詳解】因?yàn)槠矫嫫矫?,所以A1C1//平面ACD1,則點(diǎn)A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離.建立如圖所示的空間直角坐標(biāo)系,易知=(0,0,1),由題得平面,所以平面,所以,同理,因?yàn)槠矫?,所以平面,所以是平面一個(gè)法向量,所以平面ACD1的一個(gè)法向量為=(1,1,1),故所求的距離為.故選:B【點(diǎn)睛】方法點(diǎn)睛:求點(diǎn)到平面的距離常用的方法有:(1)幾何法(找作證指求);(2)向量法;(3)等體積法.要根據(jù)已知條件靈活選擇方法求解.2、B【解析】由離心率求出雙曲線方程,由對(duì)稱性設(shè)出點(diǎn)A,B,D坐標(biāo),求出坐標(biāo),求出答案.【詳解】由題意得:,解得:,因?yàn)殡x心率,所以,,故雙曲線方程為,設(shè),則,,則,所以,則,解得:,故.故選:B3、B【解析】利用向量三角形法則、平行四邊形法則、向量共線定理即可得出【詳解】如圖所示,∵=+,又=,=-,=,∴=+,故選:B4、B【解析】化簡(jiǎn)判斷圓心和半徑,利用圓的性質(zhì)判斷連接線段OC,交圓于點(diǎn)P時(shí)最小,再計(jì)算求值即得結(jié)果.【詳解】化簡(jiǎn)得圓C的標(biāo)準(zhǔn)方程為,故圓心是,半徑,則連接線段OC,交圓于點(diǎn)P時(shí)最小,因?yàn)樵c(diǎn)到圓心的距離,故此時(shí).故選:B.5、B【解析】先根據(jù)復(fù)數(shù)除法與加法運(yùn)算求解得,再求共軛復(fù)數(shù)及其虛部.【詳解】解:,所以其共軛復(fù)數(shù)為,其虛部為故選:B6、A【解析】根據(jù)米勒問題的結(jié)論,點(diǎn)應(yīng)該為過點(diǎn)、的圓與軸的切點(diǎn),設(shè)圓心的坐標(biāo)為,寫出圓的方程,并將點(diǎn)、的坐標(biāo)代入可求出點(diǎn)的橫坐標(biāo).【詳解】解:設(shè)圓心的坐標(biāo)為,則圓的方程為,將點(diǎn)、的坐標(biāo)代入圓的方程得,解得或(舍去),因此,點(diǎn)的橫坐標(biāo)為,故選:A.7、B【解析】對(duì)題設(shè)函數(shù)求導(dǎo),再求時(shí)對(duì)應(yīng)的導(dǎo)數(shù)值,即可得答案.【詳解】由題設(shè),,則,所以在時(shí)的瞬時(shí)降雨強(qiáng)度為mm/min.故選:B8、B【解析】求得圓的圓心關(guān)于直線的對(duì)稱點(diǎn),由此求得對(duì)稱圓的方程.【詳解】設(shè)圓的圓心關(guān)于直線的對(duì)稱點(diǎn)為,則,所以對(duì)稱圓的方程為.故選:B9、C【解析】根據(jù)給定條件求出即可計(jì)算橢圓的離心率.【詳解】因點(diǎn)在橢圓,則,解得,而橢圓長(zhǎng)半軸長(zhǎng),所以橢圓離心率.故選:C10、B【解析】由,得點(diǎn)為三角形的重心,可得,即可求解.【詳解】如圖:設(shè)雙曲線的焦距為,與軸交于點(diǎn),由題可知,則,由,得點(diǎn)為三角形的重心,可得,即,,即,解得.故選:B【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),三角形的重心的向量表示,屬于中檔題.11、C【解析】由已知條件可得,,,再由余弦定理得,進(jìn)而求其正弦值,最后利用三角形面積公式列方程求參數(shù)a,即可知雙曲線C的實(shí)軸長(zhǎng).【詳解】由題意知,點(diǎn)P在右支上,則,又,∴,,又,∴,則在△中,,∴,故,解得,∴實(shí)軸長(zhǎng)為,故選:C.12、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)函數(shù)公式求各函數(shù)二階導(dǎo)函數(shù),判斷其在定義域上是否恒有,即可知正確選項(xiàng).【詳解】A:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;B:,則,故是“凸函數(shù)”;C:,則,故不是“凸函數(shù)”;D:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求導(dǎo),求出函數(shù)的單調(diào)遞減區(qū)間,由即可求解.【詳解】,令,得,即的單調(diào)遞減區(qū)間是,又在上單調(diào)遞減,可得,即.故答案為:.14、【解析】設(shè)球的半徑為,代入球的表面積公式得答案【詳解】解:設(shè)球的半徑為,則,得,即或(舍去)故答案為:15、【解析】將拋物線方程化為標(biāo)準(zhǔn)形式,從而得到準(zhǔn)線方程.【詳解】拋物線方程可化為:拋物線準(zhǔn)線方程為:故答案為【點(diǎn)睛】本題考查拋物線準(zhǔn)線的求解,易錯(cuò)點(diǎn)是未將拋物線方程化為標(biāo)準(zhǔn)方程.16、【解析】根據(jù)等比數(shù)列的通項(xiàng)公式可得,結(jié)合即可求出公比.【詳解】設(shè)等比數(shù)列的公式為q,則,即,解得,又,所以,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1),,寫出的展開式通項(xiàng),由可得出關(guān)于的方程,解出的值,再利用賦值法可求得所求代數(shù)式的值;(2)寫出的展開式,求出、的值,即可求得的值.【小問1詳解】解:設(shè),,的展開式通項(xiàng)為,所以,,即,,解得,所以,.【小問2詳解】解:,,,因此,18、(1)或(2)3.【解析】(1)設(shè)切點(diǎn)坐標(biāo),由切點(diǎn)和圓心連線與切線垂直以及切點(diǎn)在圓上建立關(guān)系式,求解切點(diǎn)坐標(biāo)即可;(2)由圓的方程可得圓心坐標(biāo)及半徑,由APCQ為正方形,可得|AC|=可得圓心到直線的距離為,可得m的值【小問1詳解】解:設(shè)切點(diǎn)為,則有,解得:或x0=-2+1y0=-2,所以切點(diǎn)的坐標(biāo)為或【小問2詳解】解:圓C:的圓心(1,0),半徑r=2,設(shè),由題意可得,由四邊形APCQ為正方形,可得|AC|=,即,由題意直線l⊥AC,圓C:(x﹣1)2+y2=4,則圓心(1,0)到直線的距離,可得,m>0,解得m=3.19、(1)(2)【解析】(1)設(shè)是公差為d的等差數(shù)列,是公比為q的等比數(shù)列,運(yùn)用通項(xiàng)公式可得,,進(jìn)而得到所求通項(xiàng)公式;(2)求得,再由數(shù)列的求和方法:分組求和,運(yùn)用等差數(shù)列和等比數(shù)列的求和公式,計(jì)算即可得到所求和.【小問1詳解】解:(1)設(shè)是公差為d的等差數(shù)列,是公比為q的等比數(shù)列,由,,可得,;即有,,則,則;【小問2詳解】解:,則數(shù)列的前n項(xiàng)和為.20、(1);(2)最大值為5,最小值為;(3)答案見解析.【解析】(1)求出導(dǎo)函數(shù),進(jìn)而根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,然后求出切線方程;(2)根據(jù)求出a,進(jìn)而求出函數(shù)的單調(diào)區(qū)間,然后求出函數(shù)的最值;(3)先求出導(dǎo)函數(shù),然后討論a的取值范圍,進(jìn)而求出函數(shù)的單調(diào)區(qū)間.【小問1詳解】當(dāng)時(shí),,,切點(diǎn)坐標(biāo)為,,切線的斜率為,切線方程為,即.【小問2詳解】,是函數(shù)的極小值點(diǎn),,即,,令,得或,令,得,的單調(diào)遞增區(qū)間為,,的單調(diào)遞減區(qū)間為,,函數(shù)在區(qū)間上的最大值為5,最小值為.【小問3詳解】函數(shù)的定義域?yàn)椋畹茫?①當(dāng)時(shí),,函數(shù)在R上單調(diào)遞增;②當(dāng)時(shí),,令,得或,令,得,的單調(diào)遞增區(qū)間為,,的單調(diào)遞減區(qū)間為;③當(dāng)時(shí),,令,得或,令,得,的單調(diào)遞增區(qū)間為,,的單調(diào)遞減區(qū)間為.綜上:時(shí),,函數(shù)R上單調(diào)遞增;時(shí),的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為;時(shí),的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為.21、(1)服務(wù)通道的長(zhǎng)為千米(2)時(shí),折線賽道的長(zhǎng)度最大,最大值為千米【解析】(1)先在中利用正弦定理得到長(zhǎng)度,再在中,利用余弦定理得到即可;(2)在中利用余弦定理得到,再根據(jù)基本等式求解最值即可.【小問1詳解】在中,由正弦定理得:,在中,由余弦定理,得,即解得或(負(fù)值舍去)所以服務(wù)通道的長(zhǎng)為千米【小問2詳解】在中,由余弦定理得:,即,所以因?yàn)?,所以,所以,即(?dāng)且僅當(dāng)時(shí)取等號(hào))即當(dāng)時(shí),折

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論