版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市上海師范大學(xué)附屬第二外國(guó)語(yǔ)學(xué)校2025屆數(shù)學(xué)高二上期末考試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的漸近線方程和離心率分別是A. B.C. D.2.總體有編號(hào)為01,02,…,19,20的20個(gè)個(gè)體組成,利用下面的隨機(jī)數(shù)表選取3個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開(kāi)始由左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第3個(gè)個(gè)體的編號(hào)為()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.143.焦點(diǎn)坐標(biāo)為,(0,4),且長(zhǎng)半軸的橢圓方程為()A. B.C. D.4.過(guò)點(diǎn)且斜率為的直線方程為()A. B.C D.5.函數(shù)極小值為()A. B.C. D.6.等比數(shù)列滿(mǎn)足,,則()A.11 B.C.9 D.7.設(shè)為拋物線焦點(diǎn),直線,點(diǎn)為上任意一點(diǎn),過(guò)點(diǎn)作于,則()A.3 B.4C.2 D.不能確定8.如圖,在空間四邊形中,()A. B.C. D.9.已知雙曲線的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),M,N兩點(diǎn)分別在C的左、右兩支上,若四邊形OFMN為菱形,則C的離心率為()A. B.C. D.10.設(shè)橢圓C:的左、右焦點(diǎn)分別為、,P是C上的點(diǎn),⊥,∠=,則C的離心率為A. B.C. D.11.在正方體中,E,F(xiàn)分別為AB,CD的中點(diǎn),則與平面所成的角的正弦值為()A. B.C. D.12.若數(shù)列滿(mǎn)足,,則該數(shù)列的前2021項(xiàng)的乘積是()A. B.C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.命題,恒成立是假命題,則實(shí)數(shù)a取值范圍是________________14.在報(bào)名的3名男教師和3名女教師中,選取3人參加義務(wù)獻(xiàn)血,要求男、女教師都有,則不同的選取方法數(shù)為_(kāi)_________.(結(jié)果用數(shù)值表示)15.已知點(diǎn),為拋物線:上不同于原點(diǎn)的兩點(diǎn),且,則的面積的最小值為_(kāi)_________.16.設(shè)函數(shù),.若對(duì)任何,,恒成立,求的取值范圍______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知:方程表示焦點(diǎn)在軸上的橢圓,:方程表示焦點(diǎn)在軸上的雙曲線,其中.(1)若“”為真命題,求的取值范圍:(2)若“”為假命題,“”為真命題,求的取值范圍.18.(12分)已知橢圓的離心率為,且其左頂點(diǎn)到右焦點(diǎn)的距離為.(1)求橢圓的方程;(2)設(shè)點(diǎn)、在橢圓上,以線段為直徑的圓過(guò)原點(diǎn),試問(wèn)是否存在定點(diǎn),使得到直線的距離為定值?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)理由.19.(12分)已知圓,是圓上一點(diǎn),過(guò)A作直線l交圓C于另一點(diǎn)B,交x軸正半軸于點(diǎn)D,且A為的中點(diǎn).(1)求圓C在點(diǎn)A處的切線方程;(2)求直線l的方程.20.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若對(duì)任意的,都有成立,求的取值范圍21.(12分)已知直三棱柱中,,,E、F分別是、的中點(diǎn),D為棱上的點(diǎn).(1)證明:;(2)當(dāng)時(shí),求直線BF與平面DEF所成角的正弦值.22.(10分)某微小企業(yè)員工的年齡分布莖葉圖如圖所示:(1)求該公司員工年齡的極差和第25百分位數(shù);(2)從該公司員工中隨機(jī)抽取一位,記所抽取員工年齡在區(qū)間內(nèi)為事件,所抽取員工年齡在區(qū)間內(nèi)為事件,判斷事件與是否互相獨(dú)立,并說(shuō)明理由;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】先根據(jù)雙曲線的標(biāo)準(zhǔn)方程,求得其特征參數(shù)的值,再利用雙曲線漸近線方程公式和離心率定義分別計(jì)算即可.【詳解】雙曲線的,雙曲線的漸近線方程為,離心率為,故選A.【點(diǎn)睛】本題主要考查雙曲線的漸近線及離心率,屬于簡(jiǎn)單題.離心率的求解在圓錐曲線的考查中是一個(gè)重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來(lái)求解;④根據(jù)圓錐曲線的統(tǒng)一定義求解2、D【解析】由隨機(jī)數(shù)表法抽樣原理即可求出答案.【詳解】根據(jù)題意,依次讀出的數(shù)據(jù)為65(舍去),72(舍去),08,02,63(舍去),14,即第三個(gè)個(gè)體編號(hào)為14.故選:D.3、B【解析】根據(jù)題意可知,即可由求出,再根據(jù)焦點(diǎn)位置得出橢圓方程【詳解】因?yàn)?,所以,而焦點(diǎn)在軸上,所以橢圓方程為故選:B4、B【解析】利用點(diǎn)斜式可得出所求直線的方程.【詳解】由題意可知所求直線的方程為,即.故選:B.5、A【解析】利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,可求得該函數(shù)的極小值.【詳解】對(duì)函數(shù)求導(dǎo)得,令,可得或,列表如下:減極小值增極大值減所以,函數(shù)的極小值為.故選:A.6、B【解析】由已知結(jié)合等比數(shù)列的性質(zhì)即可求解.【詳解】由數(shù)列是等比數(shù)列,得:,故選:B7、A【解析】由拋物線方程求出準(zhǔn)線方程,由題意可得,由拋物線的定義可得,即可求解.【詳解】由可得,準(zhǔn)線為,設(shè),由拋物線的定義可得,因?yàn)檫^(guò)點(diǎn)作于,可得,所以,故選:A.8、A【解析】利用空間向量加減法法則直接運(yùn)算即可.【詳解】根據(jù)向量的加法、減法法則得.故選:A.9、C【解析】由題意可得且,從而求出點(diǎn)的坐標(biāo),將其代入雙曲線方程中,即可得出離心率.【詳解】由題意,四邊形為菱形,如圖,則且,分別為的左,右支上的點(diǎn),設(shè)點(diǎn)在第二象限,在第一象限.由雙曲線的對(duì)稱(chēng)性,可得,過(guò)點(diǎn)作軸交軸于點(diǎn),則,所以,則,所以,所以,則,即,解得,或,由雙曲線的離心率,所以取,則故選:C10、D【解析】詳解】由題意可設(shè)|PF2|=m,結(jié)合條件可知|PF1|=2m,|F1F2|=m,故離心率e=選D.點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問(wèn)題其關(guān)鍵就是確立一個(gè)關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.11、B【解析】作出線面角構(gòu)造三角形直接求解,建立空間直角坐標(biāo)系用向量法求解.【詳解】設(shè)正方體棱長(zhǎng)為2,、F分別為AB、CD的中點(diǎn),由正方體性質(zhì)知平面,所以平面平面,在平面作,則平面,因?yàn)?,所以即為所求角,所?故選:B12、C【解析】先由數(shù)列滿(mǎn)足,,計(jì)算出前5項(xiàng),可得,且,再利用周期性即可得到答案.【詳解】因?yàn)閿?shù)列滿(mǎn)足,,所以,同理可得,…所以數(shù)列每四項(xiàng)重復(fù)出現(xiàn),即,且,而,所以該數(shù)列的前2021項(xiàng)的乘積是.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由命題為假命題可得命題為真命題,由此可求a范圍.【詳解】∵命題,恒成立是假命題,∴,,∴,,又函數(shù)在為減函數(shù),∴,∴,∴實(shí)數(shù)a的取值范圍是,故答案為:.14、18【解析】由題設(shè),選取方式有兩男教師一女教師或兩女教師一男教師,應(yīng)用組合數(shù)求出選取方法數(shù).【詳解】選取方式有:選兩男教師一女教師或選兩女教師一男教師,∴不同的選取方法有:種.故答案為:18.15、【解析】設(shè),,利用可得即可求得,利用兩點(diǎn)間距離公式求出、,面積,利用基本不等式即可求最值.【詳解】設(shè),,由可得,解得:,,,,,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以的面積的最小值為,故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題解題的關(guān)鍵點(diǎn)是設(shè),坐標(biāo),采用設(shè)而不求的方法,將轉(zhuǎn)化為,求出參數(shù)之間的關(guān)系,再利用基本不等式求的最值.16、【解析】先把原不等式轉(zhuǎn)化為恒成立,構(gòu)造函數(shù),利用恒成立,求出的取值范圍.【詳解】因?yàn)閷?duì)任何,,所以對(duì)任何,,所以在上為減函數(shù).,,所以恒成立,即對(duì)恒成立,所以,所以.即的取值范圍是.故答案為:.【點(diǎn)睛】恒(能)成立問(wèn)題求參數(shù)的取值范圍:①參變分離,轉(zhuǎn)化為不含參數(shù)的最值問(wèn)題;②不能參變分離,直接對(duì)參數(shù)討論,研究的單調(diào)性及最值;③特別地,個(gè)別情況下恒成立,可轉(zhuǎn)換為(二者在同一處取得最值).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)或(2)【解析】(1)先假設(shè)命題為真命題,求出的取值范圍,為真命題,取補(bǔ)集即可(2)假設(shè)命題為真命題,求出的取值范圍,根據(jù)題意,則命題假設(shè)和命題一真一假,分類(lèi)討論求的取值范圍【小問(wèn)1詳解】解:若為真命題,則,解得,若“”為真命題,則為假命題,或;【小問(wèn)2詳解】若為真命題,則解得,若“”為假命題,則“”為真命題,則與一真一假,①若真假,則解得,②若真假,則解得,綜上所述,,即的取值范圍為.18、(1);(2)存在,.【解析】(1)由題設(shè)可知求出,再結(jié)合,從而可求出橢圓的方程,(2)①若直線與軸垂直,由對(duì)稱(chēng)性可知,代入橢圓方程可求得結(jié)果,②若直線不與軸垂直,設(shè)直線的方程為,將直線方程與橢圓方程聯(lián)立方程組,消去,然后利用根與系數(shù)的關(guān)系,設(shè),,再由條件,得,從而得,再利用點(diǎn)到直線的距離公式可求得結(jié)果【詳解】(1)由題設(shè)可知解得,,,所以橢圓的方程為:;(2)設(shè),,①若直線與軸垂直,由對(duì)稱(chēng)性可知,將點(diǎn)代入橢圓方程,解得,原點(diǎn)到該直線的距離;②若直線不與軸垂直,設(shè)直線的方程為,由消去得,則由條件,即,由韋達(dá)定理得,整理得,則原點(diǎn)到該直線的距離;故存在定點(diǎn),使得到直線的距離為定值.19、(1)(2)或【解析】(1)以直線方程的點(diǎn)斜式去求圓C在點(diǎn)A處的切線方程;(2)以A為的中點(diǎn)為突破口,設(shè)點(diǎn)法去求直線l的方程簡(jiǎn)單快捷.【小問(wèn)1詳解】圓可化為,圓心因?yàn)橹本€的斜率為,所以圓C在A點(diǎn)處切線斜率為2,所以切線方程為即.【小問(wèn)2詳解】由題意設(shè)因?yàn)槭侵悬c(diǎn),所以將B代入圓C方程得解得或當(dāng)時(shí),,此時(shí)l方程為當(dāng)時(shí),,此時(shí)l方程為所以l方程為或20、(1)答案見(jiàn)解析;(2).【解析】(1)求,分別討論不同范圍下的正負(fù),分別求單調(diào)性;(2)由(1)所求的單調(diào)性,結(jié)合,分別求出的范圍再求并集即可.【詳解】解:(1)由已知定義域?yàn)?,?dāng),即時(shí),恒成立,則在上單調(diào)遞增;當(dāng),即時(shí),(舍)或,所以在上單調(diào)遞減,在上單調(diào)遞增.所以時(shí),在上單調(diào)遞增;時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)由(1)可知,當(dāng)時(shí),在上單調(diào)遞增,若對(duì)任意的恒成立,只需,而恒成立,所以成立;當(dāng)時(shí),若,即,則在上單調(diào)遞增,又,所以成立;若,則在上單調(diào)遞減,在上單調(diào)遞增,又,所以,,不滿(mǎn)足對(duì)任意的恒成立.所以綜上所述:.21、(1)證明見(jiàn)解析(2)【解析】(1)由題意建立如圖所示的空間直角坐標(biāo)系,利用空間向量證明即可,(2)求出平面DEF的法向量,利用空間向量求解【小問(wèn)1詳解】證明:因?yàn)槿庵侵比庵?,且,所以?xún)蓛纱怪保?/p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 化工消防安全工作總結(jié)(6篇)
- 污染治理產(chǎn)業(yè)政策研究-洞察分析
- 休閑時(shí)間分配與生活滿(mǎn)意度-洞察分析
- 無(wú)線鼠標(biāo)技術(shù)發(fā)展-洞察分析
- 網(wǎng)絡(luò)安全技術(shù)創(chuàng)新-第5篇-洞察分析
- 游戲版權(quán)保護(hù)策略-洞察分析
- 微種植體支抗的骨整合機(jī)制-洞察分析
- 應(yīng)急響應(yīng)與處置能力建設(shè)-洞察分析
- 網(wǎng)絡(luò)安全法律法規(guī)-第16篇-洞察分析
- 《真核生物真菌》課件
- 2024年上海市六年高考英語(yǔ)作文試題真題匯編(含范文)
- 計(jì)算機(jī)程序設(shè)計(jì)員國(guó)家職業(yè)資格三級(jí)高級(jí)操作技能考核輔導(dǎo)課件
- 《延遲焦化介紹》課件
- 起重機(jī)械安全技術(shù)規(guī)程(TSG-51-2023)宣貫解讀課件
- 長(zhǎng)沙市湖南師大附中生物八年級(jí)上冊(cè)期末試卷含答案
- 智能化實(shí)驗(yàn)室建設(shè)方案
- 師德師風(fēng)自評(píng)情況對(duì)照《新時(shí)代高校教師職業(yè)行為十項(xiàng)準(zhǔn)則》
- 醫(yī)療器械安全生產(chǎn)培訓(xùn)
- 2023年電池Pack結(jié)構(gòu)設(shè)計(jì)工程師年度總結(jié)及下年規(guī)劃
- 《科技改善生活》主題班會(huì)教案內(nèi)容
- 2022年湖南工商大學(xué)數(shù)據(jù)科學(xué)與大數(shù)據(jù)技術(shù)專(zhuān)業(yè)《計(jì)算機(jī)網(wǎng)絡(luò)》科目期末試卷A(有答案)
評(píng)論
0/150
提交評(píng)論