第四章一元一次方程全章教案(蘇科版七年級(jí))_第1頁
第四章一元一次方程全章教案(蘇科版七年級(jí))_第2頁
第四章一元一次方程全章教案(蘇科版七年級(jí))_第3頁
第四章一元一次方程全章教案(蘇科版七年級(jí))_第4頁
第四章一元一次方程全章教案(蘇科版七年級(jí))_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第四章一元一次方程

第1課時(shí)從問題到方程(1)

目的與要求對(duì)實(shí)際問題的分析,體會(huì)方程作為實(shí)際問題的數(shù)學(xué)模型的作用。

知識(shí)與技能會(huì)列一元一次方程解決一些簡單的實(shí)際應(yīng)用

情感、態(tài)度與價(jià)值觀初步認(rèn)識(shí)方程與現(xiàn)實(shí)世界的密切聯(lián)系,感受數(shù)學(xué)的價(jià)值。

教學(xué)教程

一、創(chuàng)設(shè)情境:

(1)天平稱球(或硬幣、鉛筆等),見課本P"4.

(2)排球聯(lián)賽,某隊(duì)勝多少場(chǎng)?見課本P“4.……

建議根據(jù)實(shí)際情況,創(chuàng)設(shè)較多的與學(xué)生生活相關(guān)的實(shí)際問題,以激發(fā)學(xué)生學(xué)習(xí)興趣.

二、學(xué)生活動(dòng)、意義建構(gòu)、數(shù)學(xué)理論:

用天平演示實(shí)驗(yàn)后,學(xué)生思考問題一:可以用什么方法解決這個(gè)問題?問題二:你是如

何解決這個(gè)問題的?借助方程能否解,怎樣解?

對(duì)排球隊(duì)勝多少場(chǎng)的問題,學(xué)生思考問題一:猜一猜,該隊(duì)勝了多少場(chǎng)?

問題二:可以用什么方法解決這個(gè)問題?(嘗試法:枚舉法;列方程等)

問題三:設(shè)該隊(duì)勝了X場(chǎng),能用方程來解嗎?如何解?從而揭示課題一一從問題到方程.

三、數(shù)學(xué)運(yùn)用:

例1(補(bǔ)):見教師教學(xué)參考資料“某校七年級(jí)共有216名師生參加某次活動(dòng),用一輛面包

車和若干輛客車接送,已知這一輛面包車只能坐16人,還需用多少輛40座的客車?

學(xué)生思考一:設(shè)用x輛40座的客車,則客車能接送多少人?

學(xué)生思考二:列方程,等量關(guān)系是什么?

師提供正確的解題格式“設(shè)還需用x輛40座的客車.根據(jù)題意,得40工+16=216”.

變式訓(xùn)練一:用四輛轎車和若干輛客車接送,已知一輛轎車只能坐4人,還需用多少輛40

座的客車?

變式訓(xùn)練二:用轎車和客車共9輛車接送,已知一輛轎車只能坐4人,還需用多少輛轎車和

多少輛40座的客車?……

思維拓展見課本Pus試一試;也可補(bǔ)充題,見教師教學(xué)參考資料……

習(xí)題處理,見課本P“5練一練1,2,3.學(xué)生說清每小題的等量關(guān)系式,而后師小結(jié).

建議補(bǔ)充一些能借用一元一次方程來解的簡單的實(shí)際問題,如行程問題、工程問題、

形積問題、商品銷售問題等,介紹一些名詞,為后面的學(xué)習(xí)作一鋪墊,但一定要控制難度.

四、回顧反思:

(1)本課只是要求教師幫助學(xué)生在現(xiàn)實(shí)情境中,通過對(duì)多種實(shí)際問題的分析,感受方程是

作為刻畫現(xiàn)實(shí)世界模型的重要意義,建立方程思想.為第3單元作鋪墊,對(duì)本章知識(shí)的學(xué)習(xí)

起到提綱挈領(lǐng)的作用.

(2)教學(xué)時(shí),要在調(diào)動(dòng)學(xué)生的積極性和激發(fā)他們的學(xué)習(xí)興趣上下工夫.

四、課堂作業(yè)

五、課堂小結(jié)

這節(jié)課你學(xué)會(huì)了什么

六、課后反饋

補(bǔ)充:請(qǐng)你編擬?道符合實(shí)際生活的應(yīng)用題,使編擬的應(yīng)用題所列出的方程為一元?次方程。

第2課時(shí)從問題到方程

教學(xué)目的

知識(shí)與技能:通過對(duì)具體實(shí)際生活問題的分析,進(jìn)一步學(xué)會(huì)根據(jù)實(shí)際問題的意義設(shè)未知數(shù)并

列出方程,了解一元一次方程的概念.

過程與方法:經(jīng)歷把實(shí)際問題抽象出數(shù)學(xué)問題的過程,體會(huì)方程是人們分析、解決實(shí)際問題

的有效工具.

情感、態(tài)度與價(jià)值觀:進(jìn)一步領(lǐng)會(huì)方程與現(xiàn)實(shí)生活間的密切聯(lián)系,感受數(shù)學(xué)建模思想的應(yīng)用.

重點(diǎn):分析問題,探尋等量關(guān)系列一元一次方程;

難點(diǎn):分析問題,探尋等量關(guān)系列一元一次方程。

教學(xué)過程

一、情境引入

2

強(qiáng)強(qiáng)今年12歲,他的爺爺72歲,想一想,幾年后強(qiáng)強(qiáng)的年齡是他爺爺年齡的弓?

二、知識(shí)新授

什么是等式?

表示相等關(guān)系的式子叫做等式。

什么是方程?

含有未知數(shù)的等式叫做方程?

什么叫做一元一次方程?

含有一個(gè)未知數(shù)(元),并且未知數(shù)的次數(shù)是一次的方程叫做一

元一次方程。

注意:未知數(shù)在分母中時(shí),他的次數(shù)不能看成是1次。(分式方

程)

例1、甲,乙兩城市間的鐵路經(jīng)過技術(shù)改造,列車在兩城市間的運(yùn)行速度從80km/h提

高到100km/h,運(yùn)行時(shí)間縮短了3h。甲,乙兩城市間的路程是多少?

例2、我國很多城市水資源缺乏,為了加強(qiáng)居民的節(jié)水意識(shí),合理利用水資源,很多城

市制定了用水收費(fèi)標(biāo)準(zhǔn)。A市規(guī)定了每戶每月的標(biāo)準(zhǔn)用水量,不超過標(biāo)準(zhǔn)用水量的部分按每

立方米1.2元收費(fèi),超過標(biāo)準(zhǔn)用水量的部分按每立方米3元收費(fèi)。該市張大爺5月份用水9

立方米,需交費(fèi)16.2元,A市規(guī)定的每戶每月標(biāo)準(zhǔn)用水量是多少立方米?

(只列方程)

例3、某初中畢業(yè)班的每一個(gè)同學(xué)都將自己的相片向全班其他同學(xué)各送一張表示留念。

全班共送出2550張相片,如果全班有x名學(xué)生,根據(jù)題意,列出方程為()

A.x(x+1)=2550B.x(x1)=2550C.2x(x+1)=2550D.x(x1)=2550x2

例4、七年級(jí)8個(gè)班進(jìn)行足球友誼賽,比賽采用單循賽制(參加比賽的隊(duì)每兩隊(duì)之間只

進(jìn)行一場(chǎng)比賽),勝一場(chǎng)得3分,平一場(chǎng)得1分,負(fù)一場(chǎng)得。分,某七(4)班積17分,并

以不敗戰(zhàn)績獲得冠軍,那么七(4)班共勝幾場(chǎng)?

1

例5、一批樹苗按下列方法依次由各班領(lǐng)取;第一班取100棵和余下的Id,第二班取

11

200棵和余下的16,第三班取300棵和余下的元,……最后樹苗全部被取完,且各班的樹

苗數(shù)相等。求樹苗總數(shù)(只列方程)

三、課堂練習(xí)

四、回顧反思:

(1)把實(shí)際問題抽象為數(shù)學(xué)問題,再從數(shù)學(xué)問題到列出方程.關(guān)鍵在于弄清題意,恰當(dāng)

地巧設(shè)未知數(shù),找出問題中的相等關(guān)系.

(2)設(shè)元設(shè)得巧,方程列得妙;設(shè)元設(shè)得好,方程列的得快.一般問什么則設(shè)什么,有

時(shí)設(shè)未知的另一個(gè)量來求也較方便.

(3)解題時(shí),找出問題中的相等關(guān)系,要深刻理解題意,把握題中隱含條件及內(nèi)在聯(lián)

系(如題中等量關(guān)系語句、量與量之間的關(guān)系).

(4)學(xué)有余力的同學(xué)鼓勵(lì)其解方程(小學(xué)根據(jù)逆運(yùn)算原理),對(duì)一般同學(xué)不作要求.

五、課堂作業(yè)

作業(yè)本

六、課后反饋

補(bǔ)充:若方程(al)xb+2=l是關(guān)于x的一元一次方程,則a,b必須滿足條件是

2、有一些分別標(biāo)有6,12,18,24,……的卡片,后一張卡片上的數(shù)字比前一張卡片上的數(shù)字大

6,小王拿了相鄰的3張卡片,且這些卡片上的數(shù)字之和為342。

(1)猜猜小王拿了哪三張卡片?

(2)小王能否拿到相鄰的3張卡片,使得這三張卡片上的數(shù)之和等于86?若能拿,試求出;

若不能拿,說明理由。

第3課時(shí)解一元一次方程

知識(shí)與技能:了解與一元一次方程有關(guān)的概念,掌握等式的基本性質(zhì),能運(yùn)用等式的基本性

質(zhì)解簡單的一元一次方程.

過程與方法:產(chǎn)。的形式.

情感、態(tài)度與價(jià)值觀:強(qiáng)調(diào)檢驗(yàn)的重要性,養(yǎng)成檢驗(yàn)反思的好習(xí)慣

重點(diǎn):比較方程的解和解方程的異同;

難點(diǎn):歸納等式的性質(zhì);利用性質(zhì)解方程

教學(xué)過程

一、情境的引入

填寫下表

X12345

2x+l

當(dāng)*=時(shí),方程2x+l=5成立

分別把0,1,2,3,4代人下列方程,哪一個(gè)值能使方程成立:

(1)2x1=5(2)3x2=4x3

二、新授

1.情景創(chuàng)設(shè):

(1)見課本P“8”如何解21+1=5”.通過填表嘗試,即采用枚舉這一合情推理的方法

找出滿足方程的未知數(shù)的值,得出方程的解和解方程的概念.

(2)見課本P“9由用天平測(cè)物,聯(lián)想到等式的幾種變形.探索得出:如果我們?cè)趦蛇叡P

內(nèi)同時(shí)添上(或取下)相同質(zhì)量的物體,可以看到天平依然平衡,得x+2=5一戶5—2,3x=2x

+2-3L"2;如果我們將兩邊盤內(nèi)物體的質(zhì)量同時(shí)擴(kuò)大到原來相同的倍數(shù)(或同時(shí)縮小

到原來的幾分之一),也會(huì)看到天平依然平衡,

得2x=6fx=6+2.學(xué)生歸納等式的性質(zhì).

2.學(xué)生活動(dòng)、意義建構(gòu)、數(shù)學(xué)理論:

出示問題情景(1)后,學(xué)生考慮:怎樣求方程中的未知數(shù)的值?分別將1、2、3、4、

5代入方程,哪一個(gè)值能使方程成立?

學(xué)生做課本P“8試一試,教師講授方程的解和解方程的概念.

引入問題情景(2)后,鼓勵(lì)學(xué)生說出各自不同的想法,相互交流、補(bǔ)充,逐步引導(dǎo)啟

發(fā)學(xué)生

歸納等式的性質(zhì)1:等式兩邊都加上或減去同一個(gè)數(shù)或同二仝整式,所得結(jié)果仍是等式;

等式的

性質(zhì)2:等式兩邊都乘(或除以)同-個(gè)數(shù)(除數(shù)不為零),所得結(jié)果仍是等式.等式

的性質(zhì)比較抽象,教學(xué)時(shí)不必在理論上作過多的展開,重在問題情景②探索的過程,可多舉

例討論.

3.數(shù)學(xué)運(yùn)用:

處理完問題情景(1)(2),學(xué)生閱讀課本P118—119,進(jìn)一步熟悉學(xué)習(xí)內(nèi)容,思考:比

較方程的解和解方程的異同?(方程的解是使方程成立的未知數(shù)的值;解方程是求方程解的

過程,是一個(gè)等價(jià)變形過程,而求方程的解就是將方程變形為尸。的形式).

出示

例1、用適當(dāng)?shù)臄?shù)或整式填空,使所得的結(jié)果仍是等式,并說明是根據(jù)等式的哪一條

性質(zhì)以及怎樣變形的。

(1)若5x=4x+7,則5x=7

(2)若2a=15,則6a=

⑶若3y=18,則y=

(4)若a+8=b+8,則a=

(5)若5x=5y>則x=

例2解下列方程:

(1)x+5=2;

(2)-2x=4.

引導(dǎo)學(xué)生自己嘗試運(yùn)用等式的基本性質(zhì)解方程,說清楚每一步的依據(jù),交流解題方法.

教師提供正確的解題格式.強(qiáng)調(diào)檢驗(yàn)方法及檢驗(yàn)的必要性.

思維拓展:(1)求作一個(gè)方程,使它的解為一1;(2)簡單應(yīng)用題如課本Pi20練一練2.

三、課堂練習(xí)

四、回顧反思:

(1)小學(xué)階段利用加減法、乘除法互為逆運(yùn)算的方法解方程,學(xué)生印象深刻,教學(xué)時(shí)

鼓勵(lì)學(xué)生運(yùn)用等式的性質(zhì)來求,但不強(qiáng)求.

(2)解方程后,雖不要書面檢驗(yàn),但要求學(xué)生培養(yǎng)檢驗(yàn)反思的好習(xí)慣.

(3)注意等式的性質(zhì)中的“都”和“同”:“都”表示兩邊均要變形,“同”表示兩邊

要作一樣的變形.

五、課堂作業(yè)

六、課后反饋

第4課時(shí)解一元一次方程

目的與要求

1.使學(xué)生理解什么是方程的解?使學(xué)生理解什么是解方程?

2.使學(xué)生理解移項(xiàng)解方程的根據(jù),能熟練運(yùn)用移項(xiàng)法則解方程。

3.經(jīng)歷和體會(huì)解一元一次方程中“轉(zhuǎn)化”的思想方法。

重點(diǎn):理解方程的解,理解解方程的概念;

難點(diǎn):對(duì)移項(xiàng)時(shí)要改變符號(hào)的理解,

教學(xué)過程

一、創(chuàng)設(shè)情境:

復(fù)習(xí):

1.敘述等式的性質(zhì)(1)(2)

2.什么是方程的解?什么是解方程?

3.用適當(dāng)?shù)臄?shù)式整式填空,使得所得的結(jié)果仍是等式,并說明是根據(jù)等式的哪些性質(zhì)

進(jìn)行變形的(展示小黑板)

(1)如果x7=5,那么x=5+7

(2)如果5x2=8,那么5x=8+2

(3)如果7x=6x4,那么7x6x=4

說明:(1)x=5+7是根據(jù)等式性質(zhì)(1),兩邊都加上7

(2)5x2=8-5x=8+2是根據(jù)等式的性質(zhì)(1)兩邊都加上2

(4)7x6x=4是根據(jù)等式性質(zhì)(1),兩邊都減去6x

2.移項(xiàng)法則的導(dǎo)入

解方程:5x2=8

方程兩邊都加上2得5x2+2=8+2

也就是5x=8+2

比較這個(gè)方程與原方程,可以發(fā)現(xiàn),這個(gè)變形相當(dāng)于5x2=8-5x=8+2,

讓學(xué)生充分討論,怎樣用一句話來敘述這個(gè)變化,然后抽一名學(xué)生回答。即把原方程

中的一2改變符號(hào)后,從方程的一邊移到另一邊這種變形叫做移項(xiàng)。

因此方程5x2=8可以這樣來解:

移項(xiàng),得5x=8+2;化簡得5x=10:方程兩邊同除以5,得x=2。

強(qiáng)調(diào):移項(xiàng)要變符號(hào)

例,解方程①2x+6=l

②3x+3=2x+7

解①:移項(xiàng)得2x=16;化簡得2x:5;方程兩邊同除2得x=-』

2

(注:檢驗(yàn):把x=-°代入方程,看左邊和右邊是否相等,相等是解,不相等不是解。

2

②和學(xué)生一起分析:這個(gè)方程的左右兩邊都含有含未知數(shù)的項(xiàng)和常數(shù)項(xiàng),利用移項(xiàng)法

解方程時(shí),一般把未知數(shù)的項(xiàng)移到方程左邊,常數(shù)項(xiàng)移到方程的右邊。移項(xiàng)的目的在于將

方程變形為ax=b的形式:

移項(xiàng)得3x2x=73

合并同類項(xiàng)得x=4

問通過本題求解發(fā)現(xiàn)了什么?抽學(xué)生回答,教師再作總結(jié)。

(1)移動(dòng)的項(xiàng)要變號(hào),不移動(dòng)的項(xiàng)不變號(hào)。

(2)移項(xiàng)時(shí),左右兩邊先寫原來不移動(dòng)的項(xiàng),再寫移來的項(xiàng)。

三、實(shí)踐應(yīng)用

1.用移項(xiàng)法解下列方程。

(2)7y+5=10y54y

2.錯(cuò)誤辨析

解方程8x2=7x+3

移項(xiàng)得8x+7x=3+2

(上述移項(xiàng)錯(cuò)誤有誤:(1)7x從右邊移左邊沒有變號(hào),8x沒有移動(dòng)卻改變了符號(hào)。正

確的答案題是,移項(xiàng)得8x7x=3十2)

四、交流總結(jié)

1、什么是移項(xiàng),移項(xiàng)的根據(jù)是什么?

2、移項(xiàng)為什么要變號(hào)?

五、布置作業(yè)

P125T1-2

六、課后反饋

補(bǔ)充:1、根據(jù)等式的性質(zhì),解方程(a3)x=4

2、k為何值時(shí),2是關(guān)于x的方程31kl2x=6x+4的解?

3、當(dāng)a為何值時(shí),方程

4、當(dāng)a為何值時(shí),方程(a3)x限+b=7是關(guān)于x的一元一次方程?

第5課時(shí)解一元一次方程

目的與要求L使學(xué)生掌握解一元一次方程的移項(xiàng)規(guī)律,并且掌握帶有括號(hào)的一元一次

方程的解法;

2.培養(yǎng)學(xué)生觀察、分析、轉(zhuǎn)化的能力,同時(shí)提高他們的運(yùn)算能力.

重點(diǎn):帶有括號(hào)的一元一次方程的解法;

難點(diǎn):解一元一次方程的移項(xiàng)規(guī)律。

教學(xué)過程

一、創(chuàng)設(shè)情境:

從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

1.解方程ax二b(aWO),并指出解法根據(jù).

2.什么叫做移項(xiàng)?移項(xiàng)的根據(jù)是什么?移項(xiàng)時(shí)應(yīng)當(dāng)注意什么?

3.(投影)解下列方程:

本節(jié)課我們繼續(xù)學(xué)習(xí)移項(xiàng)應(yīng)注意的問題和含有括號(hào)的一元一次方程的解法.

研究討論解一元一次方程的移項(xiàng)規(guī)律

解方程5x+2=7x8.

解法15x+2=7x8,

移項(xiàng),得5x7x=82,

合并同類項(xiàng),得

2x=10

系數(shù)化1,得

x=5.

解法2移項(xiàng),得

2+8=7x5x,

合并同類項(xiàng),得

10=2x,

系數(shù)化1,得

x=5.

最后,請(qǐng)學(xué)生口算驗(yàn)根.

結(jié)合本例題的解法1和解法2,啟發(fā)學(xué)生總結(jié)出求解像上述例題這樣的一元一次方程時(shí),

它的移項(xiàng)規(guī)律是什么.(一般地,把含有未知數(shù)的項(xiàng)移到一邊,不含未知數(shù)的項(xiàng)移到另一邊)

(若學(xué)生回答有困難,教師應(yīng)做適當(dāng)引導(dǎo))

二、探究歸納:

師生共同探討得出帶有括號(hào)的一元一次方程的解法

例1.解方程2(x2)3(4xD=9(lx).

解:(怎樣才能將所給方程轉(zhuǎn)化為例1所示方程的形式呢?)

去括號(hào),得2x412x+3=99x,

移項(xiàng),得2xl2x+9x=9+43,

合并同類項(xiàng),得x=10,

系數(shù)化1,得x=10.

(本題解答過程應(yīng)首先由學(xué)生口述,教師板書,然后,請(qǐng)學(xué)生檢驗(yàn)10是否為原方程的根)

此時(shí),啟發(fā)學(xué)生總結(jié)遇有帶括號(hào)的一元一次方程的解法.(方程里含有括號(hào)時(shí),移項(xiàng)前,

要先去括號(hào))

三、實(shí)踐應(yīng)用:

1.下列方程的解法對(duì)不對(duì)?若不對(duì)怎樣改正?

解方程2(x+3)5(lx)=3(xl)

解:2x+355x=3xl,

2x5x3x=3+53,

6x=L

2.解方程:

(l)2x+5=258x;(2)8x2=7x2:

(3)2x+3=116x(4)3x4+2x=4x3;

(5)10y+7=1253y;

3.解方程:

(l)3(y+4)=12;(2)2(lz)=2;

(3)2(3y4)+7(4y)=4y;

(4)4x3(20x)=6x7(9x);

(5)3(2y+l)=2(l+y)+3(y+3).

四、交流反思

師生采用一問一答的形式,一起總結(jié)本節(jié)課都學(xué)習(xí)哪些內(nèi)容?哪些思想方法?應(yīng)注意什

么?

在此基礎(chǔ)上,教師應(yīng)著重指出①在運(yùn)用移項(xiàng)規(guī)律解題時(shí),一般情況下,應(yīng)把含有未知數(shù)

的項(xiàng)移到等號(hào)的左邊,但有時(shí)依具體情況,也可靈活處理;②將“復(fù)雜”問題轉(zhuǎn)化為“簡單”

問題,將“未知”問題轉(zhuǎn)化為“已知”問題,將“陌生”問題轉(zhuǎn)化為“熟悉”問題,這種思

考問題的方法是一種非常重要的數(shù)學(xué)思考方法.本節(jié)課的例題、練習(xí)題的解答就充分地體現(xiàn)

這一點(diǎn).

五、練習(xí)設(shè)計(jì)

解下列方程:

1.8x4=6x20x6+3;

2.3x26+6x9=12x+507x5;

3.4(2y+3)=8(ly)5(y2);

4.15(75x)=2x+(53x)

5.123(9y)=5(y4)7(7y);

6.16(12x)4(112x)=7(26x);

7.3x4(2x+5)=7(x5)+4(2x+l);

8.2(7y2)+10y=5(4y+3)+3y.

思考題

解下列方程:

1.2|x|l=3|x|;2.2|x+l|=|x+l|.

三、課堂練習(xí)

四、課堂小結(jié)

五、課堂作業(yè)

六、課堂反饋

第6課時(shí)解一元一次方程

教學(xué)目標(biāo)

知識(shí)與技能:知道解一元一次方程的一般步驟,能靈活運(yùn)用去分母、去括號(hào)、移項(xiàng)、合并同

類項(xiàng)、系數(shù)化為1等五大步驟解一元一次方程.

過程與方法:鞏固方程解法,經(jīng)歷求解過程,能體會(huì)到解法應(yīng)根據(jù)具體方程本身特點(diǎn)而定.

情感、態(tài)度與價(jià)值觀:體會(huì)化歸思想一把復(fù)雜變簡單,將未知變已知的作用,體會(huì)數(shù)學(xué)的

應(yīng)用價(jià)值.

重點(diǎn):帶有分母的一元一次方程的解法;

難點(diǎn):解一元一次方程的步驟。

教學(xué)過程

1.情景創(chuàng)設(shè):

畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家,有一次有位數(shù)學(xué)家問他:“尊敬的畢達(dá)哥拉斯,請(qǐng)

告訴我,有多少名學(xué)生在你的學(xué)校里聽你講課?”畢達(dá)哥拉斯回答說:“我的學(xué)生,現(xiàn)在有

工在學(xué)習(xí)數(shù)學(xué),工在學(xué)習(xí)音樂,!沉默無言,此外,還有三名婦女.”算一算:畢達(dá)哥拉斯

247

的學(xué)生有多少名?

2.學(xué)生活動(dòng)、意義建構(gòu)、數(shù)學(xué)理論:

由情景問題入手,引導(dǎo)學(xué)生審清題意,根據(jù)等量關(guān)系:學(xué)生總數(shù)的L+學(xué)生總數(shù)的L+

24

IvvK

學(xué)生總數(shù)的上工名,由題意得上+土+—+3=,

7247

學(xué)生獨(dú)立思考問題,嘗試解方程,交流自己的解法,相互加以比較.

生:①先移項(xiàng)再合并同類項(xiàng);②先合并同類項(xiàng)后移項(xiàng);③兩邊同時(shí)乘以28,56,84……)

學(xué)生比較上述方法,判斷選擇,引入一去分母.

3.數(shù)學(xué)運(yùn)用:

結(jié)合情景問題的解法,師生互動(dòng)處理課本P⑵例7、例8.

反饋矯正學(xué)生出現(xiàn)的問題,讓學(xué)生展開討論,發(fā)現(xiàn)解答時(shí)出錯(cuò)之處.

去分母時(shí)須注意:(1)確定各分母的最小公倍數(shù);(2)不要漏乘沒有分母的項(xiàng);(3)

分?jǐn)?shù)線有括號(hào)作用,去掉分母后,若分子是多項(xiàng)式,要加括號(hào),視多項(xiàng)式為一整體.建議進(jìn)

x—3x—3

行專項(xiàng)訓(xùn)練,如一乘以6,8……

22

概括解一元一次方程一般步驟,強(qiáng)調(diào)變形時(shí)各步易出現(xiàn)錯(cuò)誤的內(nèi)容.

習(xí)題練習(xí):見課本巳24練一練1,2,3

思維拓展:見課本P.議一議

x~2_x+13

0.2-QT-

O.lx0.9-0.2x

又如—--------------=1

0^030.7

(提示:分子、分母是小數(shù)、分?jǐn)?shù)的可以首先利用分?jǐn)?shù)的基本性質(zhì)將其化為整數(shù)系數(shù),

然后再解方程.)

4.回顧反思:

(1)回顧去分母注意事項(xiàng),見上面數(shù)學(xué)運(yùn)用.(2)本課時(shí)蘊(yùn)涵的數(shù)學(xué)思想方法主要是化歸

思想?解方程的過程就是通過去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、(未知數(shù))系數(shù)化為1等

步驟,把一個(gè)一元一次方程逐步轉(zhuǎn)化為后。的形式.這是一個(gè)等量變形的過程,也是一個(gè)化

歸的過程.

(3)具體解方程時(shí),可根據(jù)具體情況,有些步驟可能用不上;有些步驟可以前后順序顛倒;

有時(shí)還可以省略一些步驟,以使運(yùn)算簡化.

5.練習(xí)設(shè)計(jì)

解下列方程:

⑴?T+i;

...2x-11Ox+12x+11

(2)-------------=-------1

3124

6.布置作業(yè)

課本P125T7

第7課時(shí)用方程解問題(1)

目的與要求:

知識(shí)與技能:大致了解用方程解決問題的一般步驟和方法,明確其關(guān)鍵是找出能表示實(shí)際問

題全部含義的相等關(guān)系.

過程與方法:經(jīng)歷活動(dòng)和思考、交流與討論、分析解決問題等過程,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值.

情感、態(tài)度與價(jià)值觀:經(jīng)歷“問題情景一一建立數(shù)學(xué)模型一一解釋、應(yīng)用與拓展”的過程,

感悟數(shù)

學(xué)建模思想.

重點(diǎn):尋找等量關(guān)系

難點(diǎn):尋找等量關(guān)系

一、教學(xué)過程

1.情景創(chuàng)設(shè):

冰淇淋配料問題,見課本P⑵.

問題1:質(zhì)量為45g的某種三色冰淇淋中,咖啡色、紅色和白色配料的比為1:2:6,

這三色冰淇淋中咖啡色、紅色和白色配料分別是多少?

2.學(xué)生活動(dòng)、意義建構(gòu)、數(shù)學(xué)理論:

借用課本中兩個(gè)卡通人的對(duì)話,學(xué)生思考:(1)如果用算術(shù)解法你能解出結(jié)果嗎?如

何求?(2)若用方程求解,如何設(shè)未知數(shù)?等量關(guān)系式是什么?(3)如果在三色冰淇淋中,

咖啡色、紅色和白色配料比是2:3:5,那么如何設(shè)未知數(shù)?

學(xué)生在教師指導(dǎo)下完成問題,了解解法步驟:理解題意,找出一個(gè)能表示實(shí)際問題全

部含義的相等關(guān)系,分析解答過程,設(shè)未知數(shù),再根據(jù)相等關(guān)系列出方程,解這個(gè)方程,并

寫出答案.在設(shè)未知數(shù)和作出解答時(shí),應(yīng)注意量的單位.

3.數(shù)學(xué)運(yùn)用:

課本P127問題1:

分析:根據(jù)題中關(guān)鍵語句“3”3設(shè)共做了我m3,做桌腿的木材需4Xxm3x+4X”……

學(xué)生自主解決問題.

問題(1)(2)見課本P|28;

(3)根據(jù)“數(shù)學(xué)實(shí)驗(yàn)室”中的游戲,請(qǐng)你再編?個(gè)游戲,并列出方程求解.如:

①某列3個(gè)數(shù)的和為54,這3個(gè)數(shù)是幾?和能為56嗎?

②月歷中能有2X2矩形方塊中的4個(gè)數(shù)之和為80嗎?若有,這四個(gè)數(shù)之間有什么樣的

關(guān)系?

4.回顧反思:

(1)進(jìn)一步熟悉解一元一次方程的方法步驟;

(2)弄清楚用一元一次方程解決問題的關(guān)犍;

129練一練3,4.

5,練習(xí)反饋:

1.某面粉倉庫存放的面粉運(yùn)出15%后,還剩余42500千克,這個(gè)倉庫原來有多少面

粉?

2.買4本練習(xí)本與3支鉛筆一共用了元,已知鉛筆每支元,問練習(xí)本每本多少元?

3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù).

6.布置作業(yè):

課本P136T1-3

第8課時(shí)用方程解問題(2)

目的與要求:

知識(shí)與技能:能利用表格作為建模策略,分析實(shí)際問題中的數(shù)量關(guān)系列方程解決問題.

過程與方法:進(jìn)一步體會(huì)運(yùn)用方程解決問題的關(guān)鍵是尋找等量關(guān)系,提高分析問題、解決問

題的能力.

情感、態(tài)度與價(jià)值觀:綜合運(yùn)用已有知識(shí),在探索和解決問題的過程中獲得體驗(yàn),發(fā)展自己

的思維能力.

重點(diǎn):表格設(shè)計(jì),用表格分析題中的數(shù)量關(guān)系;

難點(diǎn):尋找等量關(guān)系

教學(xué)過程:

1.情景創(chuàng)設(shè):

廣東宏遠(yuǎn)隊(duì)的朱芳雨是中國男籃的主力前鋒.在一場(chǎng)洲際杯比賽中,他一人獨(dú)得23分(不

含罰球得分).已知他投進(jìn)3分球比2分球少4個(gè),他一共投進(jìn)了幾個(gè)3分球和幾個(gè)2分球?

2.學(xué)生活動(dòng)、意義建構(gòu)、數(shù)學(xué)理論:

學(xué)生分析:題中涉及哪兒個(gè)量?(投中3分球和2分球的個(gè)數(shù)關(guān)系,得分);相等關(guān)系

是什么?

3分球2分球

個(gè)數(shù)X

得分

(3分球的得分+2分球的得分=23)

教師提示,師生建構(gòu)表格,學(xué)生填寫.

根據(jù)表格和相等關(guān)系列出方程:

3x+2(x+4)=23.

學(xué)生在問題情景中初步體驗(yàn)用表格建模策略分析問題各量間的相互關(guān)系,列表格是解

決問題的一個(gè)重要手段.

3.數(shù)學(xué)運(yùn)用:

課本P129問題2.

學(xué)生仔細(xì)審題(齊讀或精讀后能紀(jì)述題意)思考:(1)指出問題中的數(shù)、數(shù)量、己知

數(shù)量和未知數(shù)量;(2)表格可以怎樣設(shè)計(jì)?(3)設(shè)小麗買了xkg蘋果,如何用表格分析問

題中的數(shù)量關(guān)系?列出方程是什么?

思維拓展:本題還有沒有其它解法?

(如:設(shè)小麗買了xkg橘子;設(shè)小麗買了x元蘋果;設(shè)小麗買了4元橘子)

價(jià)格(7L/kg)質(zhì)量/kg總金額/元

教師小結(jié),讓學(xué)生體會(huì)用方程解決

蘋果

問題時(shí),設(shè)未知數(shù)的方法不同,方程的復(fù)

橘子

雜程度也常常不同,—因此要有所選擇.

習(xí)題練習(xí):見課本Pi3o練一練2,3.

4.回顧反思:

(1)解方程,讀懂題意是解決問題的前提,審題不要留于形式,“磨刀不誤砍材工”.

(2)所謂解題建模策略,是幫助學(xué)生理解題意,找清楚各量間的關(guān)系的一種方法,一

種策略,一種途徑,一個(gè)手段,不要過多地加大對(duì)解題策略(列表格)的分析、構(gòu)建,這不

應(yīng)成為解方程的新的難點(diǎn).學(xué)習(xí)時(shí):可用列表格法表示問題的數(shù)量關(guān)系,列出代數(shù)式,幫助

理清思路,找準(zhǔn)等量關(guān)系列方程.

5.練習(xí)反饋

一個(gè)兩位數(shù),十位上的數(shù)字是個(gè)位上數(shù)字的2倍,如果把個(gè)位上的數(shù)與十位上的數(shù)對(duì)調(diào)

得到的數(shù)比原數(shù)小36,求原來的兩位數(shù).

6.布置作業(yè):

課本P136T4-5

第9課時(shí)用方程解問題(3)

目的與要求:

知識(shí)與技能:能利用示意圖作為建模策略,分析實(shí)際問題中的等量關(guān)系列方程解決問題.

過程與方法:經(jīng)歷用方程解決實(shí)際問題的過程,提高應(yīng)用數(shù)學(xué)的意識(shí).

情感、態(tài)度與價(jià)值觀:進(jìn)一步體會(huì)建構(gòu)方程模型的作用,培養(yǎng)抽象、概括、分析問題的能力

的勇于克服困難的意志.

重點(diǎn):示意圖的構(gòu)建和分析;

難點(diǎn):尋找等量關(guān)系.(>

教學(xué)過程:

1.情景創(chuàng)設(shè):

簡介“中國結(jié)”的文化內(nèi)涵:見教師教學(xué)參考資料“課程資源”.

問題情景,見課本Pl30.

2.學(xué)生活動(dòng)、意義建構(gòu)、數(shù)學(xué)理論:

呈現(xiàn)問題后,教師點(diǎn)撥:(1)直接分析:題中兩個(gè)條件分別交代了計(jì)劃做“中國結(jié)”

總數(shù)可用含小組成員數(shù)(設(shè)X)的兩個(gè)代數(shù)式來表示,得方程5x-9=4x+15;(2)借助示

意圖分析相等關(guān)系.結(jié)合課本示意圖,

-************

■I****學(xué)生思考:根據(jù)問題中的第(2)個(gè)

條件,

這個(gè)小組計(jì)劃做的中國結(jié)多少個(gè)?怎樣

在示意圖

上表示?你能根據(jù)示意圖中線段和或差寫出相等關(guān)系嗎?并根據(jù)相等關(guān)系列出方程嗎?

你能列出幾個(gè)不同的方程,不妨與同學(xué)交流一下.(5x—4x=9+15;5.r—9-15=4x;

5x=4x+15+9等)

示意圖通??梢援嫵芍本€圖或環(huán)形圖等,用線段的長或曲線的長來表示某些量,并根

據(jù)這些線段或曲線的長度關(guān)系列出方程.行程類問題中的數(shù)量關(guān)系多數(shù)可以用示意圖來表達(dá).

3.數(shù)學(xué)運(yùn)用:

例:甲、乙兩人在環(huán)形跑道上練習(xí)跑步.已知環(huán)形跑道一圈長400m,乙每秒中跑6m,

甲每秒中跑8m.(1)如果甲、乙兩人在跑道上相距8m處同時(shí)反向出發(fā),那么經(jīng)過多少秒

兩人首次相遇?(2)如果甲在乙前面8m處同時(shí)同向出發(fā),那么經(jīng)過多少秒兩人首次相遇?

安排構(gòu)思:補(bǔ)充環(huán)形示意圖和線形示意圖的作用,為下節(jié)課學(xué)習(xí)作一準(zhǔn)備.

分析:第(1)問是相遇問題,相等關(guān)系為:甲的行程+乙的行程;環(huán)形跑道一圈長一

8m;第(1)問是追及問題,相等關(guān)系為:甲的行程=乙的行程+相差距離(400-8)m..

教師可以指導(dǎo)學(xué)生利用環(huán)形示意圖和線形示意圖來幫助理清相等關(guān)系:

習(xí)題見課本Pm練一練1,2,3,4.

思維拓展:情景問題若設(shè)計(jì)劃做x個(gè)中國結(jié),能不能解決?

課本習(xí)題可提高要求,一題多解,變式訓(xùn)練.

4.回顧反思:

(1)利用示意圖進(jìn)行分析是繼列表格法之后解決問題的又一個(gè)直要手段,示意圖幫助

我們分析各個(gè)量之間的相互關(guān)系的一種有效的工具.教學(xué)時(shí),可多找一些實(shí)例去分析,讓學(xué)

生切身體會(huì)示意圖的作用.

(2)教學(xué)時(shí),多讓學(xué)生去探索、討論、交流,來感悟畫示意圖幫助分析問題、解決問

題.

5.練習(xí)反饋

學(xué)校春游,如果每輛汽車坐45人,則有28人沒有上車;如果每輛坐50人,則空出一輛汽

車,并且有一輛車還可以坐12人,問共有多少學(xué)生,多少汽車?

6.布置作業(yè):

課本P136T6-8

第10課時(shí)用方程解問題(4)

目的與要求:

知識(shí)與技能:能利用示意圖和列表格作為建模策略,分析行程問題中的等量關(guān)系列方程.

過程與方法:經(jīng)歷和體驗(yàn)運(yùn)用方程解決實(shí)際問題的過程,提高分析問題、解決問題的能力.

情感、態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生敢于面對(duì)挑戰(zhàn)和勇于克服困難的意志,鼓勵(lì)學(xué)生大膽嘗試,

從中獲得成功的經(jīng)驗(yàn),激發(fā)學(xué)生的學(xué)習(xí)熱情.

重點(diǎn):借助示意圖和列表格分析問題,建立等量關(guān)系;

難點(diǎn):尋找等量關(guān)系。

教學(xué)過程:

1.情景創(chuàng)設(shè):

敵我兩軍相距25km,敵軍以5km/h的速度逃跑,我軍同時(shí)以8km/h的速度追擊,并在

相距1km處發(fā)生戰(zhàn)斗,問戰(zhàn)斗是在開始追擊后幾小時(shí)發(fā)生的?

2.學(xué)生活動(dòng)、意義建構(gòu)、數(shù)學(xué)理論:

題中的相等關(guān)系是:我軍追擊的距離十^^^二敵人逃跑的距離+25km.問題情景涉及一

個(gè)常見的數(shù)量關(guān)系:路程二速度X時(shí)間.

設(shè)戰(zhàn)斗是在開始追擊后x小時(shí)發(fā)生的,列表分析:

速度(km/h)時(shí)間(h)路程(km)

我軍5X

敵軍8

列方程得5x+25=8x+l.

3.數(shù)學(xué)運(yùn)用:

例題見課本P132問題4.

運(yùn)動(dòng)場(chǎng)跑道周長400m,小紅跑步的速度是爺爺?shù)谋叮麄儚耐坏攸c(diǎn)沿跑道的同一方

向同時(shí)出發(fā),小紅5分鐘后第一次追上了爺爺,你知道他們的跑步速度嗎?

1.提出問題:

(1)參加過學(xué)校運(yùn)動(dòng)會(huì)800m或1500m的比賽項(xiàng)目嗎?速度快的人與速度慢的人會(huì)相遇

嗎?第一次相遇他們各自所走的路程之間有什么關(guān)系?

(2)從同一地點(diǎn)出發(fā)往同一方向行走,小紅5分鐘后第一次追上了爺爺,他們所走的路

程之間有什么關(guān)系?

2.探索解決問題

學(xué)生利用所學(xué)知識(shí)自己嘗試分析,教師提示:這個(gè)問題可以用列表和畫示意圖的方法

來分析,試試看.你借助分析過程能得出問題的相等關(guān)系嗎?根據(jù)相等關(guān)系如何列方程,把

你的想法與大家交流.

3.問題拓展

對(duì)于問題4

(1)如果小紅追上爺爺后立即轉(zhuǎn)身沿相反方向跑,幾分鐘后小紅又一次與爺爺相遇?

(2)如果小紅的速度是200m/min,爺爺?shù)乃俣葹?20m/min,同時(shí)同向而行,小紅在爺

爺前面100m,小紅第一次追上爺爺需要多少時(shí)間?

小紅跑的路程爺爺跑的路程

分析:(1)1^------------------------------------------->1

?400m.

(2)“線段圖”表示:

---------小紅跑的路程------?

?爺爺跑的路程300m土

議一議:如果小紅追上爺爺后立即轉(zhuǎn)身沿相反方向跑,幾分鐘后小紅再次與爺爺相遇?

學(xué)生熟悉用表格和線形示意圖分析解決.

思維拓展:問題設(shè)計(jì):請(qǐng)結(jié)合下面的方程,自編一個(gè)情景應(yīng)用題,并與同伴交流.

2xX3+3x=400.(模仿課本,如運(yùn)動(dòng)場(chǎng)跑道周長400m,哥哥和弟弟從同一起點(diǎn)沿跑道

的相反方向出發(fā),3min后他們第一次相遇,如果哥哥跑步的速度是弟弟的2倍,你知道他

們跑步的速度嗎?

設(shè)計(jì)問題:甲、乙兩地相距460km,A、B兩車分別從甲、乙兩地開出.A車速度為60km/h,

B車速度為80km/h.請(qǐng)同學(xué)們展開想象,提出問題,看一看,誰的問題更有新意?

習(xí)題:見課本P|33練一練1,2.

4.回顧反思:

(1)課時(shí)結(jié)構(gòu)構(gòu)思:呈現(xiàn)問題情景一一學(xué)生嘗試解決問題,引導(dǎo)相關(guān)經(jīng)驗(yàn)和認(rèn)知的沖

突教師引導(dǎo),學(xué)生合作探究教師組織學(xué)生交流學(xué)習(xí)過程,達(dá)成深層理解呈現(xiàn)新

問題,思維拓展,促進(jìn)知識(shí)的應(yīng)用與整合.

這是環(huán)形追及問題,同一地點(diǎn)同時(shí)出發(fā)同向而行,第一次相遇時(shí)快者比慢者多走一周。

同一地點(diǎn)同時(shí)出發(fā)相向而行,第一次相遇時(shí)兩人所走路程等于圓周長

(2)行程問題中三個(gè)量的關(guān)系學(xué)生印象深刻,分析問題重在理順三者的內(nèi)在關(guān)系,抓

住其中的一條線索路程(或時(shí)間或速度)找相等關(guān)系,這是解題的關(guān)鍵.

5.練習(xí)反饋

一隊(duì)學(xué)生從學(xué)校步行去博物館,他們以5km/h的速度行進(jìn),20min后,一名教師騎自

行車以15km/h的速度按原路追上去,在途中與學(xué)生隊(duì)伍會(huì)合,這名教師從出發(fā)到與學(xué)生會(huì)

合共用多少時(shí)間?

答案:0-2h

巡回指導(dǎo),幫助學(xué)習(xí)上有困難的學(xué)生解除疑點(diǎn)

6.布置作業(yè);

課本P136T9-11

第11課時(shí)用方程解問題(5)

目的與要求:

知識(shí)與技能:理解工程類問題中工作量、工作時(shí)間、工作效率三者之間的關(guān)系,嘗試用一元

一次方程解決有關(guān)工程類問題.

過程與方法:經(jīng)歷對(duì)實(shí)際問題具體分析、抽象的過程,進(jìn)一步熟悉解決問題的策略.

情感、態(tài)度與價(jià)值觀:體驗(yàn)知識(shí)之間的內(nèi)在聯(lián)系,獲得研究問題的方法和經(jīng)驗(yàn),發(fā)展思維能

力.

重點(diǎn):分析工作量、工作時(shí)間、工作效率三者之間的關(guān)系,尋求問題中的相等關(guān)系.

難點(diǎn):尋找等量關(guān)系。

教學(xué)過程:

1.情景創(chuàng)設(shè):

課本P133問題5

將一批會(huì)計(jì)報(bào)表輸入電腦,甲單獨(dú)做需20h完成,乙單獨(dú)做需12h完成.現(xiàn)在先由甲單

獨(dú)做4h,剩下的部分由甲、乙合作完成,甲、乙兩人合做的時(shí)間是多少?

2.學(xué)生活動(dòng)、意義建構(gòu)、數(shù)學(xué)理論:

教師點(diǎn)撥:工程類問題涉及三個(gè)量之間的關(guān)系一一工作量、工作時(shí)間、工作效率,其中

工作量=工作時(shí)間X工作效率.

學(xué)生分析情景問題,明確這個(gè)問題中的相等關(guān)系:全部工作量=甲單獨(dú)做的工作量+甲、

乙合作的工作量.如果把全部工作量看作單位1,則甲單獨(dú)做的工作量為'x4,甲、乙合作

的工作量為X問題要求的工作時(shí)間.

1220

甲單獨(dú)做的甲、乙合作的工

全部工作量

工作量作量

1

3.數(shù)學(xué)運(yùn)用:

例題:學(xué)校需制作若干塊標(biāo)志牌,請(qǐng)來師徒2名工人.己知師傅單獨(dú)完成需4天,徒弟

單獨(dú)完成需6天,請(qǐng)對(duì)上述情境提出一個(gè)問題?試一試并給予解答,必要時(shí)可對(duì)情境作適當(dāng)

補(bǔ)充看看誰的問題更有創(chuàng)意.

學(xué)生思考、交流.

(①兩人合作需幾天完成?②師傅先單獨(dú)做2天,剩下的由徒弟單獨(dú)做,還需幾天完

成?③師傅先單獨(dú)做2天,剩下的由師徒倆共同做,還需幾天完成?……)

思維拓展一:現(xiàn)由徒弟先做1天,再兩人合作,完成后共得到報(bào)酬450元.如果按各人

完成的工作量計(jì)算報(bào)酬,那么該如何分配?

學(xué)生嘗試解答這一問題,并與同學(xué)們一起交流各自的做法.

思維拓展二:解決課本P134試一試.

4.回顧反思:

(1)在解決實(shí)際問題時(shí),經(jīng)常畫出“表格、示意圖”這樣的圖形幫助尋找等量關(guān)系,

從而很好的解決問題.表格和示意圖是挖掘題中的等量關(guān)系的常用方法學(xué)習(xí)時(shí),既要學(xué)會(huì)將

文字語言轉(zhuǎn)化為圖形語言、符號(hào)語言,也要學(xué)會(huì)將圖形語言、符號(hào)語言轉(zhuǎn)化為文字語言.通

過前幾課時(shí)的學(xué)習(xí),要綜合全面的考慮問題,巧借表格、線形示意圖、圓形示意圖等分析題

意,學(xué)會(huì)比較區(qū)別各種方法的優(yōu)劣,并能加以合理運(yùn)用.

(2)及時(shí)總結(jié)各類題型所要常用的基本數(shù)量關(guān)系.

5.練習(xí)反饋

習(xí)題練習(xí):見課本練一練1,2.

6.布置作業(yè):

課本P136T12-13

第11課時(shí)用方程解問題(6)

目的與要求:

知識(shí)與技能:理解商品銷售中的進(jìn)價(jià)、標(biāo)價(jià)、折扣率、利潤(率)、售價(jià)等概念及其之間的

關(guān)系.能根據(jù)利潤=實(shí)際售價(jià)一進(jìn)價(jià)等數(shù)量關(guān)系列一元一次方程求解.

過程與方法:進(jìn)一步體會(huì)方程模型的作用,,總結(jié)運(yùn)用方程解決實(shí)際問題的一般方法,提高

應(yīng)用數(shù)學(xué)的意識(shí).

情感、態(tài)度與價(jià)值觀:通過商品銷售的學(xué)習(xí),使學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,通過獲得成功

的體驗(yàn)和克服困難的經(jīng)歷,增進(jìn)應(yīng)用數(shù)學(xué)的自信心.

重點(diǎn):理清標(biāo)價(jià)、折扣率、利潤(率)、售價(jià)等數(shù)量之間的關(guān)系,找準(zhǔn)等量關(guān)系。

難點(diǎn):尋找等量關(guān)系

教學(xué)過程:

1.情景創(chuàng)設(shè):

某商場(chǎng)在銷售一種皮衣時(shí),為了吸引顧客,先按進(jìn)價(jià)的150%標(biāo)價(jià),再按標(biāo)價(jià)的8折(標(biāo)

價(jià)的80%)出售,結(jié)果每件皮裝仍獲利160元,問這種皮衣的進(jìn)價(jià)為每件多少元?

1.分析:“8折”就是按“原價(jià)的80%”來出售

2.由已知的關(guān)系式,幫助學(xué)生分析題意,然后提問:(屏幕顯示問題)

I)這道題的已知是什么?

(8折,利潤率,進(jìn)價(jià))

2)這道題求的是什么?(商品的原價(jià))

3)如果設(shè)有商品的原價(jià)為X元,對(duì)它打8折后,售價(jià)是多少?(8伙x元)

4)利潤是多少?

((80%xl600))元

5)打8折后的利潤率是多少?

80%xl600Ju

1600

從題中可找出一個(gè)什么樣的關(guān)系式?

2.學(xué)生活動(dòng)、意義建構(gòu)、數(shù)學(xué)理論:

分析:本題含有明顯的等量關(guān)系是利潤=售價(jià)一進(jìn)價(jià).

學(xué)生思考:設(shè)這種皮裝的進(jìn)價(jià)為每件x元,則標(biāo)價(jià)應(yīng)是元,售價(jià)為元,列

方程是.

解:設(shè)這種皮裝的進(jìn)價(jià)為每件工元,根據(jù)題意得

xX150%X80%一戶1600;

解這個(gè)方程得.『800.

答:略.

學(xué)生自讀課本PI35問題6,比較與情景問題的區(qū)別、聯(lián)系.進(jìn)一步理解示意圖的作用.

3.數(shù)學(xué)運(yùn)用:

例1:一件夾克衫先按成本提高50%標(biāo)價(jià),再以8折(標(biāo)價(jià)的80%)出售,結(jié)果獲利

28元。這件夾克衫的成本是多少元?

分析:我們把商品的利潤看成是售價(jià)與成本的差。

解:設(shè)這件夾克衫的成本是x元,根據(jù)題意,得

x+28=(l+50%)xx80%

解這個(gè)方程,得x=140

答:這件夾克衫的成本是140元。

例2:某種商品因換季準(zhǔn)備打折出售,如果按定價(jià)的七五折出售將賠25元;而按定價(jià)

的九折出售將賺20元.問這種商品的定價(jià)是多少?

XV—20,^=300)

學(xué)生獨(dú)立思考,解決問題.

4.練習(xí)反饋:

習(xí)題練習(xí):見課本P|36練一練1,2.

5.思維拓展:見課本P136試一試.

6.回顧反思:

商品銷售類:利潤率=鞭

進(jìn)價(jià)

利潤:售價(jià)一進(jìn)價(jià);

7.課外思考:

商店對(duì)某種商品打8折出售,已知它原來的售價(jià)是2200元,打折后的利潤率是10%,

求此商品的進(jìn)價(jià)?

1讓學(xué)生找出其中的相等的關(guān)系式。然后把等式的左右兩邊譯成代數(shù)式從而列出方程。

2注意:設(shè)此商品的進(jìn)價(jià)是X元,應(yīng)列成一元一次方程:320年80%-X4l0%%,不要列成

分式方程81()1I121314

IS

2200x80%-x151617192021

22232425262728

29303132333435

36373839404142

6.布置作業(yè):

課本P137T14-1520032004

第12課時(shí)用方程解問題

口歷中的學(xué)問

課程目標(biāo):

1、認(rèn)識(shí)萬年歷,會(huì)查閱萬年歷,了解中華民族特有計(jì)時(shí)法一天干地支計(jì)年法。

2、引導(dǎo)學(xué)生閱讀、了解日歷。發(fā)現(xiàn)日歷中每個(gè)月的日期排列的基本規(guī)律,為進(jìn)入中學(xué)系統(tǒng)

研究方程奠定基礎(chǔ);

3、能用相關(guān)的規(guī)律解決一些實(shí)際問題;

4、培養(yǎng)學(xué)生求異思維能力,發(fā)現(xiàn)問題、解決問題的能力;

5、在引導(dǎo)學(xué)生讀日歷的過程中,拓展視野,親近中華文化,感受人文親情。

課程理念:日歷是生活中必不可少的一種生活工具,具有一定的閱讀日歷的能力也是非常重

要的。日歷中數(shù)的排列蘊(yùn)涵了豐富的數(shù)學(xué)知識(shí),它是一塊很好的數(shù)學(xué)研究基地,同時(shí)它也是

一塊很有價(jià)值的人文文化研究基地,因此對(duì)它的研究太有必要了。

一、創(chuàng)設(shè)情境,導(dǎo)入課題

1、學(xué)生出題老師猜。(任意給出縱橫相鄰三個(gè)數(shù)的和)

2、揭示課題(板書:讀日歷)

把本月的日歷寫下來,老師一遍寫,學(xué)生一邊仔細(xì)(I)若同一豎列中有3個(gè)連續(xù)數(shù)的和約48,這3個(gè)數(shù)分

別是娶少?同一堅(jiān)列中柜有3個(gè)連續(xù)數(shù)的加為62嗎?

觀察。(2)若同一■列中次"4個(gè)連續(xù)數(shù)的和為82,這4個(gè)效分

別是多少?同一堅(jiān)列中能有4個(gè)連續(xù)數(shù)的加為83嗎?

適時(shí)提出一些最基本的問題。(3)熊用長方形樞框出2x2個(gè)數(shù)的切為96嗎?如果有,

這4個(gè)數(shù)之間有葉么關(guān)系?

(4)若用長方形樞樞出3x3個(gè)數(shù).且從左下角到右上

角的對(duì)角瓏上的3個(gè)數(shù)之和為60,那么這9個(gè)數(shù)的和為

多少?說出樞出的9天中原后一天日期。

例1.這是2006年1月的日歷:

例2.2005年某月的日歷上,星期六的日期全部加起來是75,問這個(gè)月的第一天是星期兒?

分兩類討論:

(1)若有4個(gè)星期六,則設(shè)為x7,x,x+7,x+14

根據(jù)題意:x7+x+x+7+x+14=75,x=

不合題意。

(2)若有5個(gè)星期六,則設(shè)為:xl4,x7,x,x+7,x+14

根據(jù)題意:xl4+x7+x+x+7+x+l4=75,x=15,即五個(gè)星期六有日期是1,8,15,22,29。故這個(gè)

月的第一天是星期六。

例3.在日歷中你是否發(fā)現(xiàn)一個(gè)4x4的16個(gè)數(shù)存在怎樣的關(guān)系呢?

如何求這16個(gè)數(shù)的和呢?

若將連續(xù)自然數(shù)1至2004按圖中的方式排成一個(gè)長

方形陣列,用一個(gè)正方形框出16個(gè)數(shù),它們的和能否

等于2000,2004?若不可能,試說明理由;若有可能,

請(qǐng)求出該正方形框出的16個(gè)數(shù)中的最小數(shù)和最大數(shù)。

例.口答(課件出示)

?月歷中蘊(yùn)含著一定的數(shù)學(xué)知識(shí),4

?(1)橫排相鄰各數(shù)之差為1A.六一班右匚個(gè)在一月里連續(xù)三個(gè)

?(2)豎排相鄰各數(shù)之差為7周六都去敬老院做好事,第一個(gè)周六

?(長方形方框框出任意四個(gè)數(shù),其對(duì)角線兩數(shù)的

3)2x2是號(hào),第二次去是幾號(hào)?第三次

和相等。8

?(4)我方形方框框出任意3x3九個(gè)數(shù),以中間數(shù)為中心呢?

對(duì)稱的兩個(gè)數(shù)之和相等且等于中間這個(gè)數(shù)的2倍,另外九

B.上個(gè)月小勤連續(xù)5天都為媽媽洗

數(shù)之和是中間這個(gè)數(shù)的9倍。

腳。他只記得最后一天是19號(hào)(星

期六)。那么這5天中第一天是星期幾?這5天的日期和多少?

C.李校長外出開會(huì)一周,這一周各天的日期之和是63.這一周是哪幾號(hào)?

D.今年的5月1號(hào)是周日,五月份還有哪幾天號(hào)是周日。

思考題:

4、制作日歷(開放性問題)。

這個(gè)月有31天,但有5個(gè)星期日,而且1號(hào)不是星期日。

這節(jié)課你學(xué)會(huì)了什么?

作業(yè)紙

第13課時(shí)用方程解問題

調(diào)配問題

情境的引入

小麗在水果店花18元買了蘋果和橘子共6kg,已知蘋果每千克3.2元,橘子每千克2.6元。

小麗買了蘋果和橘子各多少?

新授

例1、為了合理利用電力能源,揚(yáng)州市市區(qū)實(shí)行了分時(shí)計(jì)收電費(fèi)制度,晚21:00一早8:00

時(shí),電費(fèi)價(jià)格為0.30元/千瓦時(shí),早8:00時(shí)一晚21:00時(shí),電費(fèi)價(jià)格為0.55元/千瓦時(shí)。

某戶居民十月份用電98千瓦時(shí),共付電費(fèi)42.65元,問該戶居民白天(早8:00時(shí)一晚21:

00時(shí))用電多少千瓦時(shí)?

解:設(shè)該戶居民白天用電量為X千瓦時(shí),則夜間用電量

為(98x)千瓦時(shí)。

解之得:x=53

答:該戶居民當(dāng)月白天用電量為53千瓦時(shí)。

例2、交警一中隊(duì)有42人,交警二中隊(duì)有19人,能否從一中隊(duì)調(diào)幾名交警到二中隊(duì),使得

一中隊(duì)輦?cè)藬?shù)是二中隊(duì)交警人數(shù)的2倍?

解:設(shè)號(hào)中隊(duì)調(diào)x人到手中隊(duì),則一中隊(duì)人數(shù)是

(42x)人,二中隊(duì)人數(shù)是@9+x)人。

42x=2(19+x)

解之得:x=

因?yàn)槿藬?shù)不能為分?jǐn)?shù),即x=不符合題意

答:不可能從一中隊(duì)調(diào)若干交警到二中隊(duì),使一中

隊(duì)的人數(shù)是二中隊(duì)人數(shù)的2倍。

分析:J居股、.

例3.某鎮(zhèn)糧食倉庫中1號(hào)倉庫存糧200t,2號(hào)倉庫存糧70雌;楠t士庫布小心由吸號(hào)

倉庫每天運(yùn)進(jìn)25t糧,問幾天后,2號(hào)倉庫的存糧是1號(hào)倉庫彳讖e御糧倍”運(yùn)出15運(yùn)進(jìn)25

相等關(guān)系:2號(hào)倉庫存糧=2x1號(hào)倉庫存糧X天后存糧t200-15X70+25X

解答:設(shè)x天后兩

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論