版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河南省示范初中2025屆高二數(shù)學第一學期期末聯(lián)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列是首項為,公差為1的等差數(shù)列,數(shù)列滿足.若對任意的,都有成立,則實數(shù)的取值范圍是()A., B.C., D.2.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還.”其意思為:有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地,請問第二天走了()A.192
里 B.96
里C.48
里 D.24
里3.設點P是函數(shù)圖象上任意一點,點Q的坐標,當取得最小值時圓C:上恰有2個點到直線的距離為1,則實數(shù)r的取值范圍為()A. B.C. D.4.如圖1所示,拋物面天線是指由拋物面(拋物線繞其對稱軸旋轉(zhuǎn)形成的曲面)反射器和位于其焦點上的照射器(饋源,通常采用喇叭天線)組成的單反射面型天線,廣泛應用于微波和衛(wèi)星通訊等,具有結構簡單、方向性強、工作頻帶寬等特點.圖2是圖1的軸截面,,兩點關于拋物線的對稱軸對稱,是拋物線的焦點,是饋源的方向角,記為.焦點到頂點的距離與口徑的比為拋物面天線的焦徑比,它直接影響天線的效率與信噪比等.若饋源方向角滿足,則該拋物面天線的焦徑比為()A. B.C. D.25.函數(shù)的圖象大致為()A B.C D.6.俗話說“好貨不便宜,便宜沒好貨”,依此判斷,“不便宜”是“好貨”的()A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件7.如圖,正四棱柱ABCD—A1B1C1D1中,AA1=2AB,則異面直線A1B與AD1所成角的余弦值為A. B.C. D.8.直線與圓的位置關系是()A.相切 B.相交C.相離 D.不確定9.已知函數(shù)f(x)的圖象如圖所示,則導函數(shù)f(x)的圖象可能是()A. B.C. D.10.已知向量,,,若,則實數(shù)()A. B.C. D.11.已知,是雙曲線C:(,)的兩個焦點,過點與x軸垂直的直線與雙曲線C交于A、B兩點,若是等腰直角三角形,則雙曲線C的離心率為()A. B.C. D.12.已知曲線的方程為,則下列說法正確的是()①曲線關于坐標原點對稱;②曲線是一個橢圓;③曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積.A.① B.①②C.③ D.①③二、填空題:本題共4小題,每小題5分,共20分。13.某公司青年、中年、老年員工的人數(shù)之比為10∶8∶7,從中抽取100名作為樣本,若每人被抽中的概率是0.2,則該公司青年員工的人數(shù)為__________14.已知,點在軸上,且,則點的坐標為____________.15.設與是定義在同一區(qū)間上的兩個函數(shù),若函數(shù)在上有兩個不同的零點,則稱與在上是“關聯(lián)函數(shù)”.若與在上是“關聯(lián)函數(shù)”,則實數(shù)的取值范圍是____________.16.若,,都為正實數(shù),,且,,成等比數(shù)列,則的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知四棱臺的上、下底面分別是邊長為2和4的正方形,,且底面,點分別在棱、上·(1)若P是的中點,證明:;(2)若平面,二面角的余弦值為,求四面體的體積18.(12分)已知數(shù)列的前項和為,且(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和19.(12分)如圖,在空間四邊形中,分別是的中點,分別在上,且(1)求證:四點共面;(2)設與交于點,求證:三點共線.20.(12分)已知數(shù)列滿足,,.(1)證明:數(shù)列是等比數(shù)列,并求其通項公式;(2)若,求數(shù)列的前項和.21.(12分)已知函數(shù)(e為自然對數(shù)的底數(shù)),(),.(1)若直線與函數(shù),的圖象都相切,求a的值;(2)若方程有兩個不同的實數(shù)解,求a的取值范圍.22.(10分)設函數(shù)(1)求在處的切線方程;(2)求在上的最大值與最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由等差數(shù)列通項公式得,再結合題意得數(shù)列單調(diào)遞增,且滿足,,即,再解不等式即可得答案.【詳解】解:根據(jù)題意:數(shù)列是首項為,公差為1的等差數(shù)列,所以,由于數(shù)列滿足,所以對任意的都成立,故數(shù)列單調(diào)遞增,且滿足,,所以,解得故選:2、B【解析】由題可得此人每天走的步數(shù)等比數(shù)列,根據(jù)求和公式求出首項可得.【詳解】由題意可知此人每天走的步數(shù)構成為公比的等比數(shù)列,由題意和等比數(shù)列的求和公式可得,解得,第此人第二天走里.故選:B3、C【解析】先求出代表的是以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),數(shù)形結合得到取得最小值時a的值,得到圓心C,利用點到直線距離求出圓心C到直線的距離,數(shù)形結合求出半徑r的取值范圍.【詳解】,兩邊平方得:,即點P在以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),如圖所示:因為Q的坐標為,則在直線,過點A作⊥l于點,與半圓交于點,此時長為的最小值,則,所以直線:,與聯(lián)立得:,所以,解得:,則圓C:,則,圓心到直線的距離為,要想圓C上恰有2個點到直線的距離為1,則.故選:C4、B【解析】建立平面直角坐標系,利用題設條件得到得點坐標,代入拋物線方程化簡即可求解【詳解】建立如圖所示的平面直角坐標系,設拋物線的方程為()在中,則所以則所以,所以將代入拋物線方程中得所以或即或(舍)當時,故選:B5、A【解析】利用導數(shù)求得的單調(diào)區(qū)間,結合函數(shù)值確定正確選項.【詳解】由,可得函數(shù)的減區(qū)間為,增區(qū)間為,當時,,可得選項為A故選:A6、A【解析】將“好貨”與“不便宜”進行相互推理即可求得答案.【詳解】根據(jù)題意,“好貨”一定“不便宜”,但是“不便宜”不一定是“好貨”,所以“不便宜”是“好貨”的必要不充分條件.故選:A.7、D【解析】設AA1=2AB=2,因為,所以異面直線A1B與AD1所成角,,故選D.8、B【解析】直線恒過定點,而此點在圓的內(nèi)部,故可得直線與圓的位置關系.【詳解】直線恒過定點,而,故點在圓的內(nèi)部,故直線與圓的位置關系為相交,故選:B.9、D【解析】根據(jù)導函數(shù)正負與原函數(shù)單調(diào)性關系可作答【詳解】原函數(shù)在上先減后增,再減再增,對應到導函數(shù)先負再正,再負再正,且原函數(shù)在處與軸相切,故可知,導函數(shù)圖象為D故選:D10、C【解析】先根據(jù)題意求出,然后再根據(jù)得出,最后通過計算得出結果.【詳解】因為,,所以,又,,所以,即,解得.故選:.【點睛】本題主要考查向量數(shù)量積的坐標運算及向量垂直的相關性質(zhì),熟記運算法則即可,屬于??碱}型.11、B【解析】根據(jù)等腰直角三角形的性質(zhì),結合雙曲線的離心率公式進行求解即可.【詳解】由題意不妨設,,當時,由,不妨設,因為是等腰直角三角形,所以有,或舍去,故選:B12、D【解析】對于①在方程中換為,換為可判斷;對于②分析曲線的圖形是兩個拋物線的部分組成的可判斷;對于③在第一象限內(nèi),分析橢圓的圖形與曲線圖形的位置關系可判斷.【詳解】在曲線的方程中,換為,換為,方程不變,故曲線關于坐標原點對稱所以①正確,當時,曲線的方程化為,此時當時,曲線的方程化為,此時所以曲線圖形是兩個拋物線的部分組成的,不是橢圓,故②不正確.當,時,設,設,則,(當且僅當或時等號成立)所以在第一象限內(nèi),橢圓的圖形在曲線的上方.根據(jù)曲線和橢圓的的對稱性可得橢圓的圖形在曲線的外部(四個頂點在曲線上)所以曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積,故③正確.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、200【解析】先根據(jù)分層抽樣的方法計算出該單位青年職工應抽取的人數(shù),進而算出青年職工的總?cè)藬?shù).【詳解】由題意,從中抽取100名員工作為樣本,需要從該單位青年職工中抽取(人).因為每人被抽中的概率是0.2,所以青年職工共有(人).故答案:200.14、【解析】設P(0,0,z),由|PA|=|PB|,得1+4+(z?1)2=4+4+(z?2)2,解得z=3,故點P的坐標為(0,0,3).15、【解析】令得,設函數(shù),則直線與函數(shù)在區(qū)間上的圖象有兩個交點,利用導數(shù)分析函數(shù)的單調(diào)性與極值,利用數(shù)形結合思想可求得實數(shù)的取值范圍.【詳解】令得,設函數(shù),則直線與函數(shù)在區(qū)間上的圖象有兩個交點,,令,可得,列表如下:極小值,,如圖所示:由圖可知,當時,直線與函數(shù)在區(qū)間上的圖象有兩個交點,因此,實數(shù)的取值范圍是.故答案為:.16、##【解析】利用等比中項及條件可得,進而可得,再利用基本不等式即得.【詳解】∵,,都為正實數(shù),,,成等比數(shù)列,∴,又,∴,即,∴,∴,當且僅當,即取等號.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,利用空間向量的坐標運算知,即可證得結論;(2)利用空間向量結合已知的面面角余弦值可求得,再利用線面平行的已知條件求得,再將四面體視為以為底面的三棱錐,利用錐體的體積公式即可得解.【小問1詳解】以為坐標原點,,,所在直線分別為,,軸建立空間直角坐標系,則,,,,設,其中,,若是的中點,則,,,于是,∴,即【小問2詳解】由題設知,,,是平面內(nèi)的兩個不共線向量設是平面的一個法向量,則,取,得又平面的一個法向量是,∴,而二面角的余弦值為,因此,解得或(舍去),此時設,而,由此得點,,∵平面,且平面的一個法向量是,∴,即,解得,從而將四面體視為以為底面的三棱錐,則其高,故四面體的體積【點睛】方法點睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結合圖形,作出所求空間角,再結合題中條件,解對應的三角形,即可求出結果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結果.18、(1)(2)【解析】(1)結合作差法可直接求解;(2)由錯位相減法可直接求解.【小問1詳解】當時,;當時,,當時,滿足上式,所以;【小問2詳解】由(1)知,所以①,②,①-②得,所以.19、(1)證明見解析;(2)證明見解析.【解析】(1)根據(jù)題意,利用中位線定理和線段成比例,先證明,進而證明問題;(2)先證明平面,平面,進而證明點P在兩個平面的交線上,然后證得結論.【小問1詳解】連接分別是的中點,.在中,.所以四點共面.【小問2詳解】,所以,又平面平面,同理:,平面平面,為平面與平面的一個公共點.又平面平面,即三點共線.20、(1)證明見解析,;(2).【解析】(1)由已知條件,可得為常數(shù),從而得證數(shù)列是等比數(shù)列,進而可得數(shù)列的通項公式;(2)由(1)可得,又,所以,所以,利用錯位相減法即可求解數(shù)列的前項和.【小問1詳解】證明:由題意,因為,,,所以,,所以數(shù)列是以2為首項,3為公比的等比數(shù)列,所以;【小問2詳解】解:由(1)可得,又,所以,所以,所以,所以,,所以,所以.21、(1);(2).【解析】(1)根據(jù)導數(shù)的幾何意義進行求解即可;(2)利用常變量分離法,通過構造新函數(shù),由方程有兩個不同的實數(shù)解問題,轉(zhuǎn)化為兩個函數(shù)的圖象有兩個交點問題,利用導數(shù)進行求解即可.【小問1詳解】設曲線的切點坐標為,由,所以過該切點的切線的斜率為,因此該切線方程為:,因為直線與函數(shù)的圖象相切,所以,因為直線與函數(shù)的圖象相切,且函數(shù)過原點,所以曲線的切點為,于是有,即;【小問2詳解】由可得:,當時,顯然不成立,當時,由,設函數(shù),,,當時,,單調(diào)遞減,當時,,單調(diào)遞減,當時,,單調(diào)遞增,因此當時,函數(shù)有最小值,最小值為,而,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年光伏發(fā)電項目環(huán)境影響評估合同
- 2025年度智能穿戴設備研發(fā)與合作購銷合同封面
- 2025年度護校校園安全管理與應急預案合同
- 2025年度新能源汽車推廣與應用合同補充協(xié)議范本
- 2025年度醫(yī)療設備采購合同擔保期限與售后服務責任
- 2025年度定制化辦公家具供應合同
- 2025版煤炭購銷合同范本合同標的與價格調(diào)整機制3篇
- 2025年建筑垃圾資源化利用墻體拆除施工合同范本
- 2025年版國際貿(mào)易出口合同標準范本及實施細則
- 2025年度全球貨運航空代理服務合同
- 2024版全文:中國2型糖尿病預防及治療指南
- 社會主義發(fā)展史(齊魯師范學院)知到智慧樹章節(jié)答案
- 課程思政融入高職院校應用文寫作課程教學路徑探析
- 2024全新鋼結構安全培訓
- 2025屆高三數(shù)學一輪復習-分段函數(shù)專項訓練【含答案】
- 《工程力學》課程教學大綱
- 7.1.2 直觀圖的畫法-【中職專用】高一數(shù)學教材配套課件(高教版2021·基礎模塊下冊)
- 皮膚癬菌病的分子診斷工具
- SL+575-2012水利水電工程水土保持技術規(guī)范
- 人美版初中美術知識點匯總八年級全冊
- 迅雷網(wǎng)盤最最最全影視資源-持續(xù)更新7.26
評論
0/150
提交評論