版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省重點(diǎn)中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末檢測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.定義在R上的函數(shù)與函數(shù)在上具有相同的單調(diào)性,則k的取值范圍是()A. B.C. D.2.已知數(shù)列的通項(xiàng)公式為,且數(shù)列是遞增數(shù)列,則實(shí)數(shù)的取值范圍是()A. B.C. D.3.已知函數(shù),,若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.4.函數(shù)在點(diǎn)處的切線方程的斜率是()A. B.C. D.5.若是函數(shù)的一個(gè)極值點(diǎn),則的極大值為()A. B.C. D.6.在等差數(shù)列{}中,,,則的值為()A.18 B.20C.22 D.247.“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件8.甲、乙兩名射擊運(yùn)動(dòng)員進(jìn)行比賽,甲的中靶概率為0.8,乙的中靶概率為0.9,則兩人各射擊一次恰有一人中靶的概率為()A.0.26 B.0.28C.0.72 D.0.989.動(dòng)點(diǎn)P,Q分別在拋物線和圓上,則的最小值為()A. B.C. D.10.過(guò)點(diǎn)P(2,1)作直線l,使l與雙曲線-y2=1有且僅有一個(gè)公共點(diǎn),這樣的直線l共有A.1條 B.2條C.3條 D.4條11.的展開(kāi)式中的系數(shù)是()A.1792 B.C.448 D.12.如圖,在直三棱柱中,,,D為AB的中點(diǎn),點(diǎn)E在線段上,點(diǎn)F在線段上,則線段EF長(zhǎng)的最小值為()A B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.將全體正整數(shù)排成一個(gè)三角形數(shù)陣:按照以上排列的規(guī)律,第行從左向右的第2個(gè)數(shù)為_(kāi)___________.14.橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和等于,則的標(biāo)準(zhǔn)方程為_(kāi)_____.15.已知命題,則命題的的否定是___________.16.已知曲線在點(diǎn)處的切線與曲線相切,則______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知橢圓上頂點(diǎn)與橢圓的左,右頂點(diǎn)連線的斜率之積為(1)求橢圓C的離心率;(2)若直線與橢圓C相交于A,B兩點(diǎn),,求橢圓C的標(biāo)準(zhǔn)方程19.(12分)已知的展開(kāi)式中前三項(xiàng)的二項(xiàng)式系數(shù)之和為46,(1)求n;(2)求展開(kāi)式中系數(shù)最大的項(xiàng)20.(12分)設(shè)銳角三角形ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,.(1)求B的大小(2)若,,求b.21.(12分)已知雙曲線的漸近線方程為,且過(guò)點(diǎn)(1)求雙曲線的方程;(2)過(guò)雙曲線的一個(gè)焦點(diǎn)作斜率為的直線交雙曲線于兩點(diǎn),求弦長(zhǎng)22.(10分)已知函數(shù),其中(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(2)①若恒成立,求的最小值;②證明:,其中.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】判定函數(shù)單調(diào)性,再利用導(dǎo)數(shù)結(jié)合函數(shù)在的單調(diào)性列式計(jì)算作答.【詳解】由函數(shù)得:,當(dāng)且僅當(dāng)時(shí)取“=”,則在R上單調(diào)遞減,于是得函數(shù)在上單調(diào)遞減,即,,即,而在上單調(diào)遞減,當(dāng)時(shí),,則,所以k的取值范圍是.故選:B2、C【解析】利用遞增數(shù)列的定義即可.【詳解】由,∴,即是小于2n+1的最小值,∴,故選:C3、A【解析】由定義證明函數(shù)的單調(diào)性,再由函數(shù)不等式恒能成立的性質(zhì)得出,從而得出實(shí)數(shù)的取值范圍.【詳解】任取,,即函數(shù)在上單調(diào)遞減,若,使得,則即故選:A【點(diǎn)睛】結(jié)論點(diǎn)睛:本題考查不等式恒成立問(wèn)題,解題關(guān)鍵是轉(zhuǎn)化為求函數(shù)的最值,轉(zhuǎn)化時(shí)要注意全稱量詞與存在量詞對(duì)題意的影響.等價(jià)轉(zhuǎn)化如下:(1),,使得成立等價(jià)于(2),,不等式恒成立等價(jià)于(3),,使得成立等價(jià)于(4),,使得成立等價(jià)于4、D【解析】求解導(dǎo)函數(shù),再由導(dǎo)數(shù)的幾何意義得切線的斜率.【詳解】求導(dǎo)得,由導(dǎo)數(shù)的幾何意義得,所以函數(shù)在處切線的斜率為.故選:D5、D【解析】先對(duì)函數(shù)求導(dǎo),由已知,先求出,再令,并判斷函數(shù)在其左右兩邊的單調(diào)性,從而確定極大值點(diǎn),然后帶入原函數(shù)即可完成求解.【詳解】因?yàn)?,,所以,所以,,令,解得或,所以?dāng),,單調(diào)遞增;時(shí),,單調(diào)遞減;當(dāng),,單調(diào)遞增,所以的極大值為故選:D6、B【解析】根據(jù)等差數(shù)列通項(xiàng)公式相關(guān)計(jì)算求出公差,進(jìn)而求出首項(xiàng).【詳解】設(shè)公差為,由題意得:,解得:,所以.故選:B7、B【解析】根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:由,得,反之不成立,如,,滿足,但是不滿足,故“”是“”的充分不必要條件故選:B8、A【解析】依據(jù)獨(dú)立事件同時(shí)發(fā)生的概率即可求得甲乙兩人各射擊一次恰有一人中靶的概率.【詳解】記甲中靶為事件A,乙中靶為事件B,則甲乙兩人各射擊一次恰有一人中靶,包含甲中乙不中和甲不中乙中兩種情況,則甲乙兩人各射擊一次恰有一人中靶的概率為故選:A9、B【解析】設(shè),根據(jù)兩點(diǎn)間距離公式,先求得P到圓心的最小距離,根據(jù)圓的幾何性質(zhì),即可得答案.【詳解】設(shè),圓化簡(jiǎn)為,即圓心為(0,4),半徑為,所以點(diǎn)P到圓心的距離,令,則,令,,為開(kāi)口向上,對(duì)稱軸為的拋物線,所以的最小值為,所以,所以的最小值為.故選:B10、B【解析】利用幾何法,結(jié)合雙曲線的幾何性質(zhì),得出符合條件的結(jié)論.【詳解】由雙曲線的方程可知其漸近線方程為y=±x,則點(diǎn)P(2,1)在漸近線y=x上,又雙曲線的右頂點(diǎn)為A(2,0),如圖所示.滿足條件的直線l有兩條:x=2,y-1=-(x-2)【點(diǎn)睛】該題考查的是有關(guān)直線與雙曲線的公共點(diǎn)有一個(gè)的條件,結(jié)合雙曲線的性質(zhì),結(jié)合圖形,得出結(jié)果,屬于中檔題目.11、D【解析】根據(jù)二項(xiàng)式展開(kāi)式的通項(xiàng)公式計(jì)算出正確答案.【詳解】的展開(kāi)式中,含的項(xiàng)為.所以的系數(shù)是.故選:D12、B【解析】根據(jù)給定條件建立空間直角坐標(biāo)系,令,用表示出點(diǎn)E,F(xiàn)坐標(biāo),再由兩點(diǎn)間距離公式計(jì)算作答.【詳解】依題意,兩兩垂直,建立如圖所示的空間直角坐標(biāo)系,則,,設(shè),則,設(shè),有,線段EF長(zhǎng)最短,必滿足,則有,解得,即,因此,,當(dāng)且僅當(dāng)時(shí)取“=”,所以線段EF長(zhǎng)的最小值為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】通過(guò)觀察、分析、歸納,找出規(guī)律運(yùn)算求解即可【詳解】前行共有正整數(shù)個(gè),即個(gè),因此第行第個(gè)數(shù)是全體正整數(shù)中第個(gè),即為故答案為:14、【解析】根據(jù)橢圓定義求出其長(zhǎng)半軸長(zhǎng),再結(jié)合焦點(diǎn)坐標(biāo)即可計(jì)算作答.【詳解】因橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和等于,則該橢圓長(zhǎng)半軸長(zhǎng),而半焦距,于是得短半軸長(zhǎng)b,有,所以的標(biāo)準(zhǔn)方程為.故答案為:15、【解析】利用含有一個(gè)量詞的命題的否定的定義求解.【詳解】因?yàn)槊}是存在量詞命題,所以其否定是全稱量詞命題即,故答案為:16、2或10【解析】求出在處的導(dǎo)數(shù),得出切線方程,與聯(lián)立,利用可求.【詳解】令,,則,,可得曲線在點(diǎn)處的切線方程為.聯(lián)立,得,,解得或.故答案為:2或10.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)答案見(jiàn)解析;(2).【解析】(1)求出函數(shù)的定義域?yàn)?,求得,分、、三種情況討論,分析導(dǎo)數(shù)的符號(hào)變化,由此可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)構(gòu)造函數(shù),由題意可知恒成立,對(duì)實(shí)數(shù)分和兩種情況討論,利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,驗(yàn)證是否成立,由此可得出實(shí)數(shù)的取值范圍.【詳解】(1)函數(shù)的定義域?yàn)椋?(i)當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;(ii)當(dāng)時(shí),令得.若,則;若,則.①當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;②當(dāng)時(shí),,當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減;綜上,可得,當(dāng)時(shí),函數(shù)在上單調(diào)遞增;當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2)設(shè),,則.當(dāng)時(shí),單調(diào)遞增,則.所以,函數(shù)在上單調(diào)遞增,且.當(dāng)時(shí),,于是,函數(shù)在上單調(diào)遞增,恒成立,符合題意;當(dāng)時(shí),由于,,,所以,存在,使得.當(dāng)時(shí),,函數(shù)單調(diào)遞減;當(dāng)時(shí),,函數(shù)單調(diào)遞增.故,不符合題意,綜上所述,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用導(dǎo)數(shù)研究函數(shù)不等式恒成立問(wèn)題,考查分類討論思想的應(yīng)用,屬于難題.18、(1)(2)【解析】(1)根據(jù)題意,可知,可得,再根據(jù)橢圓的性質(zhì)可得,由此即可求出離心率;(2)將直線與橢圓方程聯(lián)立,由韋達(dá)定理得到,,再根據(jù)弦長(zhǎng)公式,建立方程,即可求出的值,進(jìn)而求出橢圓方程.【小問(wèn)1詳解】解:由題意可知,橢圓上頂點(diǎn)坐標(biāo)為,左右頂點(diǎn)的坐標(biāo)分別為、,∴,即,則又,∴,所以橢圓的離心率;【小問(wèn)2詳解】解:設(shè),,由得:,∴,,,∴,解得,∴,滿足,∴,∴橢圓C的方程為19、(1)9(2)【解析】(1)根據(jù)要求列出方程,求出的值;(2)求出二項(xiàng)式展開(kāi)式的通項(xiàng),列出不等式組,求出的取值范圍,從而求出,得到系數(shù)最大項(xiàng).【小問(wèn)1詳解】由題意得:,解得:或,因?yàn)椋裕ㄉ崛ィ?,從而【小?wèn)2詳解】二項(xiàng)式的展開(kāi)式通項(xiàng)為:,則系數(shù)為,要求其最大值,則只要滿足,即9!r!9-r!?2r≥9!r-1!10-r20、(1);(2)【解析】(1)由正弦定理,可得,進(jìn)而可求出和角;(2)利用余弦定理,可得,即可求出.【詳解】(1)由,得,因?yàn)?,所以,又因?yàn)锽為銳角,所以(2)由余弦定理,可得,解得【點(diǎn)睛】本題考查正弦、余弦定理在解三角形中的運(yùn)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.21、(1);(2).【解析】(1)根據(jù)雙曲線漸近線斜率、雙曲線過(guò)點(diǎn)可構(gòu)造方程求得,由此可得雙曲線方程;(2)由雙曲線方程可得焦點(diǎn)坐標(biāo),由此可得方程,與雙曲線方程聯(lián)立后,利用弦長(zhǎng)公式可求得結(jié)果.【小問(wèn)1詳解】由雙曲線方程知:漸近線斜率,又漸近線方程為,;雙曲線過(guò)點(diǎn),;由得:,雙曲線的方程為:;【小問(wèn)2詳解】由(1)得:雙曲線的焦點(diǎn)坐標(biāo)為;若直線過(guò)雙曲線的左焦點(diǎn),則,由得:;設(shè),,則,;由雙曲線對(duì)稱性可知:當(dāng)過(guò)雙曲線右焦點(diǎn)時(shí),;綜上所述:.22、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)①1;②證明見(jiàn)解析【解析】(1)求出函數(shù)的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 教師自學(xué)計(jì)劃范文
- 幼兒園園長(zhǎng)工作每月提示11月-幼兒園園務(wù)計(jì)劃
- 物業(yè)公司出納工作計(jì)劃模板
- 2025銷售工作計(jì)劃的范文
- 區(qū)殘聯(lián)某年工作初步計(jì)劃
- 2025-2025學(xué)年度上學(xué)期小學(xué)學(xué)校工作計(jì)劃
- 1月秘書個(gè)人工作計(jì)劃
- 《氣血循環(huán)機(jī)》課件
- 《行政的執(zhí)行及手段》課件
- 合同備案的法律規(guī)定
- -腹腔鏡下肝部分切除術(shù)的護(hù)理查房
- 消防工程施工方案
- 生態(tài)雞養(yǎng)殖項(xiàng)目建議書
- 東北三省精準(zhǔn)教學(xué)2024年12月高三聯(lián)考語(yǔ)文試卷(含答案詳解)
- 【MOOC】信號(hào)與系統(tǒng)-南京郵電大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 2024年競(jìng)聘公司經(jīng)理演講稿模版(3篇)
- 統(tǒng)編版(2024)七年級(jí)上冊(cè)道德與法治第四單元追求美好人生測(cè)試卷(含答案)
- 大學(xué)美育(同濟(jì)大學(xué)版)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 中國(guó)重癥患者腸外營(yíng)養(yǎng)治療臨床實(shí)踐專家共識(shí)(2024)解讀
- 足三陰經(jīng)周康梅
- MOOC 跨文化交際通識(shí)通論-揚(yáng)州大學(xué) 中國(guó)大學(xué)慕課答案
評(píng)論
0/150
提交評(píng)論