版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆福建省寧德市六校高一數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),,其中,若,,使得成立,則()A. B.C. D.2.已知f(x-1)=2x-5,且f(a)=6,則a等于()A. B.C. D.3.若函數(shù)(,且)在區(qū)間上單調(diào)遞增,則A., B.,C., D.,4.已知函數(shù),則,()A.4 B.3C. D.5.已知函數(shù)f(x)=log3(x+1),若f(a)=1,則a等于()A.0 B.1C.2 D.36.化簡的值是A. B.C. D.7.設函數(shù),若,則的取值范圍為A. B.C. D.8.要得到函數(shù)f(x)=cos(2x-)的圖象,只需將函數(shù)g(x)=cos2x的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移單位長度 D.向右平移個單位長度9.已知函數(shù)是定義在上的奇函數(shù),當時,,則當時,表達式是A. B.C. D.10.若-4<x<1,則()A.有最小值1 B.有最大值1C.有最小值-1 D.有最大值-1二、填空題:本大題共6小題,每小題5分,共30分。11.若在內(nèi)無零點,則的取值范圍為___________.12.若函數(shù)在區(qū)間上有兩個零點,則實數(shù)的取值范圍是_______.13.若兩個正實數(shù),滿足,且不等式恒成立,則實數(shù)的取值范圍是__________14.已知,則_________15.如圖,已知六棱錐P﹣ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=AB,則下列結論正確的是_____.(填序號)①PB⊥AD;②平面PAB⊥平面PBC;③直線BC∥平面PAE;④sin∠PDA16.下列說法正確的序號是__________________.(寫出所有正確的序號)①正切函數(shù)在定義域內(nèi)是增函數(shù);②已知函數(shù)的最小正周期為,將的圖象向右平移個單位長度,所得圖象關于軸對稱,則的一個值可以是;③若,則三點共線;④函數(shù)的最小值為;⑤函數(shù)在上是增函數(shù),則的取值范圍是.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)滿足下列3個條件:①函數(shù)的周期為;②是函數(shù)的對稱軸;③.(1)請任選其中二個條件,并求出此時函數(shù)的解析式;(2)若,求函數(shù)的最值.18.設全集為,或,.(1)求,;(2)求.19.已知函數(shù),.(1)利用定義證明函數(shù)單調(diào)遞增;(2)求函數(shù)的最大值和最小值.20.設兩個向量,,滿足,.(1)若,求、的夾角;(2)若、夾角為,向量與夾角為鈍角,求實數(shù)的取值范圍.21.已知且,函數(shù).(1)求的定義域;(2)判斷的奇偶性,并用定義證明;(3)求使的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】首先已知等式變形為,構造兩個函數(shù),,問題可轉化為這兩個函數(shù)的值域之間的包含關系【詳解】∵,,∴,又,∴,∴由得,,設,,則,,,∴的值域是值域的子集∵,時,,顯然,(否則0屬于的值域,但)∴,∴(*)由上討論知同號,時,(*)式可化為,∴,,當時,(*)式可化為,∴,無解綜上:故選:B【點睛】本題考查函數(shù)恒成立問題,解題關鍵是掌握轉化與化歸思想.首先是分離兩個變量,然后構造新函數(shù),問題轉化為兩個函數(shù)值域之間的包含關系.其次通過已知關系確定函數(shù)值域的形式(或者參數(shù)的一個范圍),在這個范圍解不等式才能非常簡單地求解2、B【解析】先用換元法求出,然后由函數(shù)值求自變量即可.【詳解】令,則,可得,即,由題知,解得.故選:B3、B【解析】函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間內(nèi)不等于,故當時,函數(shù)才能遞增故選4、D【解析】根據(jù)分段函數(shù)解析式代入計算可得;【詳解】解:因為,,所以,所以故選:D5、C【解析】根據(jù),解對數(shù)方程,直接得到答案.【詳解】∵,∴a+1=3,∴a=2.故選:C.點睛】本題考查了解對數(shù)方程,屬于基礎題.6、B【解析】利用終邊相同角同名函數(shù)相同,可轉化為求的余弦值即可.【詳解】.故選B.【點睛】本題主要考查了三角函數(shù)中終邊相同的角三角函數(shù)值相同及特殊角的三角函數(shù)值,屬于容易題.7、A【解析】根據(jù)對數(shù)函數(shù)的性質單調(diào)遞增,,列出不等式,解出即可.【詳解】∵函數(shù)在定義域內(nèi)單調(diào)遞增,,∴不等式等價于,解得,故選A.【點睛】本題主要考查了對數(shù)不等式的解法,在解題過程中要始終注意函數(shù)的定義域,也是易錯點,屬于中檔題.8、D【解析】利用函數(shù)的圖象變換規(guī)律即可得解.【詳解】解:,只需將函數(shù)圖象向右平移個單位長度即可故選.【點睛】本題主要考查函數(shù)圖象變換規(guī)律,屬于基礎題9、D【解析】若,則,利用給出的解析式求出,再由奇函數(shù)的定義即,求出.【詳解】設,則,當時,,,函數(shù)是定義在上的奇函數(shù),,,故選D.【點睛】本題考查了函數(shù)奇偶性在求解析式的應用,屬于中檔題.本題題型可歸納為“已知當時,函數(shù),則當時,求函數(shù)的解析式”.有如下結論:若函數(shù)為偶函數(shù),則當時,函數(shù)的解析式為;若為奇函數(shù),則函數(shù)的解析式為10、D【解析】先將轉化為,根據(jù)-4<x<1,利用基本不等式求解.【詳解】又∵-4<x<1,∴x-1<0∴-(x-1)>0∴.當且僅當x-1=,即x=0時等號成立故選:D【點睛】本題主要考查基本不等式的應用,還考查了轉化求解問題的能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】求出函數(shù)的零點,根據(jù)函數(shù)在內(nèi)無零點,列出滿足條件的不等式,從而求的取值范圍.【詳解】因為函數(shù)在內(nèi)無零點,所以,所以;由,得,所以或,由,得;由,得;由,得,因為函數(shù)在內(nèi)無零點,所以或或,又因為,所以取值范圍為.故答案為:.12、【解析】由題意根據(jù)數(shù)形結合,只要,并且對稱軸在之間,,解不等式組即可【詳解】由題意,要使函數(shù)區(qū)間上有兩個零點,只要,即,解得,故答案為【點睛】本題主要考查了二次函數(shù)的性質,函數(shù)零點的分布,關鍵是結合二次函數(shù)圖象等價得到不等式組,常見的形式有考慮端點值處函數(shù)值的符號,對稱軸與所給區(qū)間的關系,對稱軸處函數(shù)值的符號等,屬于中檔題.13、【解析】根據(jù)題意,只要即可,再根據(jù)基本不等式中的“”的妙用,求得,解不等式即可得解.【詳解】根據(jù)題意先求得最小值,由,得,所以若要不等式恒成立,只要,即,解得,所以.故答案為:14、【解析】利用交集的運算解題即可.【詳解】交集即為共同的部分,即.故答案為:15、④【解析】由題意,分別根據(jù)線面位置關系的判定定理和性質定理,逐項判定,即可得到答案.【詳解】∵PA⊥平面ABC,如果PB⊥AD,可得AD⊥AB,但是AD與AB成60°,∴①不成立,過A作AG⊥PB于G,如果平面PAB⊥平面PBC,可得AG⊥BC,∵PA⊥BC,∴BC⊥平面PAB,∴BC⊥AB,矛盾,所以②不正確;BC與AE是相交直線,所以BC一定不與平面PAE平行,所以③不正確;在Rt△PAD中,由于AD=2AB=2PA,∴sin∠PDA,所以④正確;故答案為:④【點睛】本題考查線面位置關系判定與證明,考查線線角,屬于基礎題.熟練掌握空間中線面位置關系的定義、判定、幾何特征是解答的關鍵,其中垂直、平行關系證明中應用轉化與化歸思想的常見類型(1)證明線面、面面平行,需轉化為證明線線平行;(2)證明線面垂直,需轉化為證明線線垂直;(3)證明線線垂直,需轉化為證明線面垂直.16、③⑤【解析】對每一個命題逐一判斷得解.【詳解】①正切函數(shù)在內(nèi)是增函數(shù),所以該命題是錯誤的;②因為函數(shù)的最小正周期為,所以w=2,所以將的圖象向右平移個單位長度得到,所得圖象關于軸對稱,所以,所以的一個值不可以是,所以該命題是錯誤的;③若,因為,所以三點共線,所以該命題是正確的;④函數(shù)=,所以sinx=-1時,y最小為-1,所以該命題是錯誤的;⑤函數(shù)在上是增函數(shù),則,所以的取值范圍是.所以該命題是正確的.故答案為③⑤【點睛】本題主要考查正切函數(shù)的單調(diào)性,考查正弦型函數(shù)的圖像和性質,考查含sinx的二次型函數(shù)的最值的計算,考查對數(shù)型函數(shù)的單調(diào)性,意在考查學生對這些知識的掌握水平和分析推理能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析,;(2)最大值;最小值.【解析】(1)由①知,由②知,由③知,結合即可求出的解析式.(2)由可得,進而可求出函數(shù)最值.【詳解】解:(1)選①②,則,解得,因為,所以,即;選①③,,由得,因,所以,即;選②③,,由得,因為,所以,即.(2)由題意得,因為,所以.所以當即時,有最大值,所以當即時,有最小值.【點睛】本題考查了三角函數(shù)的周期,考查了三角函數(shù)的對稱軸,考查了三角函數(shù)的值域,考查了三角函數(shù)表達式的求解,意在考查學生對于三角函數(shù)知識的綜合應用.18、(1)或,(2)或【解析】(1)根據(jù)集合的交集和并集的定義即可求解;(2)先根據(jù)補集的定義求出,然后再由交集的定義即可求解.【小問1詳解】解:因為或,,所以或,;【小問2詳解】解:因為全集為,或,,所以或,所以或.19、(1)證明見詳解;(2)最大值;最小值.【解析】(1)任取、且,求,因式分解,然后判斷的符號,進而可得出函數(shù)的單調(diào)性;(2)利用(1)中的結論可求得函數(shù)的最大值和最小值.【詳解】(1)任取、且,因為,所以,,,,,,即,因此,函數(shù)在區(qū)間上為增函數(shù);(2)由(1)知,當時,函數(shù)取得最小值;當時,函數(shù)取得最大值.【點睛】關鍵點睛:求函數(shù)的最值利用函數(shù)的單調(diào)性是解決本題的關鍵.20、(1);(2)且.【解析】(1)根據(jù)數(shù)量積運算以及結果,結合模長,即可求得,再根據(jù)數(shù)量積求得夾角;(2)根據(jù)夾角為鈍角則數(shù)量積為負數(shù),求得的范圍;再排除向量與不為反向向量對應參數(shù)的范圍,則問題得解.【詳解】(1)因,所以,即,又,,所以,所以,又,所以向量、的夾角是.(2)因為向量與的夾角為鈍角,所以,且向量與不反向共線,即,又、夾角為,所以,所以,解得,又向量與不反向共線,所以,解得,所以的取值范圍是且.【點睛】本題考查利用數(shù)量積求向量夾角,以及由夾角范圍求參數(shù)范
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國調(diào)制解調(diào)器行業(yè)運營現(xiàn)狀及投資前景規(guī)劃研究報告
- 2025-2030年中國血液透析機行業(yè)市場競爭格局及未來投資趨勢分析報告
- 2025-2030年中國聯(lián)軸器市場前景規(guī)模及發(fā)展趨勢分析報告
- 2025-2030年中國端氨基聚醚行業(yè)競爭格局與前景發(fā)展策略分析報告
- 2025-2030年中國石榴石市場運行狀況及未來發(fā)展趨勢預測報告
- 2025-2030年中國番茄行業(yè)市場運行狀況及投資前景趨勢分析報告
- 2025-2030年中國電暖爐桌行業(yè)競爭格局展望及投資策略分析報告新版
- 2025-2030年中國甲基丙烯酸市場競爭格局展望及投資策略分析報告
- 2025-2030年中國滾子鏈市場發(fā)展前景調(diào)研及投資戰(zhàn)略分析報告
- 2025-2030年中國混合芳烴市場發(fā)展現(xiàn)狀與投資規(guī)劃研究報告
- 課題申報書:大中小學鑄牢中華民族共同體意識教育一體化研究
- 巖土工程勘察課件0巖土工程勘察
- 《腎上腺腫瘤》課件
- 2024-2030年中國典當行業(yè)發(fā)展前景預測及融資策略分析報告
- 《乘用車越野性能主觀評價方法》
- 幼師個人成長發(fā)展規(guī)劃
- 2024-2025學年北師大版高二上學期期末英語試題及解答參考
- 批發(fā)面包采購合同范本
- 乘風化麟 蛇我其誰 2025XX集團年終總結暨頒獎盛典
- 2024年大數(shù)據(jù)分析公司與中國政府合作協(xié)議
- 一年級數(shù)學(上)計算題專項練習匯編
評論
0/150
提交評論