2023-2024學(xué)年北京臨川學(xué)校高考模擬金典卷數(shù)學(xué)試題(一)試題_第1頁
2023-2024學(xué)年北京臨川學(xué)校高考模擬金典卷數(shù)學(xué)試題(一)試題_第2頁
2023-2024學(xué)年北京臨川學(xué)校高考模擬金典卷數(shù)學(xué)試題(一)試題_第3頁
2023-2024學(xué)年北京臨川學(xué)校高考模擬金典卷數(shù)學(xué)試題(一)試題_第4頁
2023-2024學(xué)年北京臨川學(xué)校高考模擬金典卷數(shù)學(xué)試題(一)試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年北京臨川學(xué)校高考模擬金典卷數(shù)學(xué)試題(一)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.以下關(guān)于的命題,正確的是A.函數(shù)在區(qū)間上單調(diào)遞增B.直線需是函數(shù)圖象的一條對稱軸C.點(diǎn)是函數(shù)圖象的一個(gè)對稱中心D.將函數(shù)圖象向左平移需個(gè)單位,可得到的圖象2.已知x,y滿足不等式,且目標(biāo)函數(shù)z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]3.已知曲線,動(dòng)點(diǎn)在直線上,過點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,則直線截圓所得弦長為()A. B.2 C.4 D.4.雙曲線的漸近線方程為()A. B. C. D.5.已知,,分別是三個(gè)內(nèi)角,,的對邊,,則()A. B. C. D.6.已知拋物線的焦點(diǎn)與雙曲線的一個(gè)焦點(diǎn)重合,且拋物線的準(zhǔn)線被雙曲線截得的線段長為,那么該雙曲線的離心率為()A. B. C. D.7.已知函數(shù),則下列結(jié)論中正確的是①函數(shù)的最小正周期為;②函數(shù)的圖象是軸對稱圖形;③函數(shù)的極大值為;④函數(shù)的最小值為.A.①③ B.②④C.②③ D.②③④8.已知命題p:“”是“”的充要條件;,,則()A.為真命題 B.為真命題C.為真命題 D.為假命題9.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個(gè)同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個(gè)同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.設(shè),其中a,b是實(shí)數(shù),則()A.1 B.2 C. D.11.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.若滿足,且目標(biāo)函數(shù)的最大值為2,則的最小值為()A.8 B.4 C. D.6二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的最小正周期是_______________,單調(diào)遞增區(qū)間是__________.14.已知向量=(1,2),=(-3,1),則=______.15.若的展開式中各項(xiàng)系數(shù)之和為32,則展開式中x的系數(shù)為_____16.雙曲線的焦點(diǎn)坐標(biāo)是_______________,漸近線方程是_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),(其中,).(1)求函數(shù)的最小值.(2)若,求證:.18.(12分)設(shè)點(diǎn),動(dòng)圓經(jīng)過點(diǎn)且和直線相切.記動(dòng)圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點(diǎn)的直線與曲線交于、兩點(diǎn),且直線與軸交于點(diǎn),設(shè),,求證:為定值.19.(12分)在平面直角坐標(biāo)系中,曲線,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求曲線、的極坐標(biāo)方程;(2)在極坐標(biāo)系中,射線與曲線,分別交于、兩點(diǎn)(異于極點(diǎn)),定點(diǎn),求的面積20.(12分)近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對入院人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:患心肺疾病不患心肺疾病合計(jì)男女合計(jì)已知在全部人中隨機(jī)抽取人,抽到患心肺疾病的人的概率為.(1)請將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為患心肺疾病與性別有關(guān)?請說明你的理由;(2)已知在不患心肺疾病的位男性中,有位從事的是戶外作業(yè)的工作.為了指導(dǎo)市民盡可能地減少因霧霾天氣對身體的傷害,現(xiàn)從不患心肺疾病的位男性中,選出人進(jìn)行問卷調(diào)查,求所選的人中至少有一位從事的是戶外作業(yè)的概率.下面的臨界值表供參考:(參考公式,其中)21.(12分)某商店舉行促銷反饋活動(dòng),顧客購物每滿200元,有一次抽獎(jiǎng)機(jī)會(huì)(即滿200元可以抽獎(jiǎng)一次,滿400元可以抽獎(jiǎng)兩次,依次類推).抽獎(jiǎng)的規(guī)則如下:在一個(gè)不透明口袋中裝有編號分別為1,2,3,4,5的5個(gè)完全相同的小球,顧客每次從口袋中摸出一個(gè)小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球編號一次比一次大(如1,2,5),則獲得一等獎(jiǎng),獎(jiǎng)金40元;若摸得的小球編號一次比一次小(如5,3,1),則獲得二等獎(jiǎng),獎(jiǎng)金20元;其余情況獲得三等獎(jiǎng),獎(jiǎng)金10元.(1)某人抽獎(jiǎng)一次,求其獲獎(jiǎng)金額X的概率分布和數(shù)學(xué)期望;(2)趙四購物恰好滿600元,假設(shè)他不放棄每次抽獎(jiǎng)機(jī)會(huì),求他獲得的獎(jiǎng)金恰好為60元的概率.22.(10分)已知橢圓()的離心率為,且經(jīng)過點(diǎn).(1)求橢圓的方程;(2)過點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

利用輔助角公式化簡函數(shù)得到,再逐項(xiàng)判斷正誤得到答案.【詳解】A選項(xiàng),函數(shù)先增后減,錯(cuò)誤B選項(xiàng),不是函數(shù)對稱軸,錯(cuò)誤C選項(xiàng),,不是對稱中心,錯(cuò)誤D選項(xiàng),圖象向左平移需個(gè)單位得到,正確故答案選D【點(diǎn)睛】本題考查了三角函數(shù)的單調(diào)性,對稱軸,對稱中心,平移,意在考查學(xué)生對于三角函數(shù)性質(zhì)的綜合應(yīng)用,其中化簡三角函數(shù)是解題的關(guān)鍵.2.B【解析】

作出可行域,對t進(jìn)行分類討論分析目標(biāo)函數(shù)的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當(dāng)t≤2時(shí),可行域即為如圖中的△OAM,此時(shí)目標(biāo)函數(shù)z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時(shí)可知目標(biāo)函數(shù)Z=9x+6y在的交點(diǎn)()處取得最大值,此時(shí)Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點(diǎn)睛】此題考查線性規(guī)劃,根據(jù)可行域結(jié)合目標(biāo)函數(shù)的最大值的取值范圍求參數(shù)的取值范圍,涉及分類討論思想,關(guān)鍵在于熟練掌握截距型目標(biāo)函數(shù)的最大值最優(yōu)解的處理辦法.3.C【解析】

設(shè),根據(jù)導(dǎo)數(shù)的幾何意義,求出切線斜率,進(jìn)而得到切線方程,將點(diǎn)坐標(biāo)代入切線方程,抽象出直線方程,且過定點(diǎn)為已知圓的圓心,即可求解.【詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,,即,由于都過點(diǎn),所以,即都在直線上,所以直線的方程為,恒過定點(diǎn),即直線過圓心,則直線截圓所得弦長為4.故選:C.【點(diǎn)睛】本題考查直線與圓位置關(guān)系、直線與拋物線位置關(guān)系,拋物線兩切點(diǎn)所在直線求解是解題的關(guān)鍵,屬于中檔題.4.C【解析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于容易題.5.C【解析】

原式由正弦定理化簡得,由于,可求的值.【詳解】解:由及正弦定理得.因?yàn)?,所以代入上式化簡?由于,所以.又,故.故選:C.【點(diǎn)睛】本題主要考查正弦定理解三角形,三角函數(shù)恒等變換等基礎(chǔ)知識;考查運(yùn)算求解能力,推理論證能力,屬于中檔題.6.A【解析】

由拋物線的焦點(diǎn)得雙曲線的焦點(diǎn),求出,由拋物線準(zhǔn)線方程被曲線截得的線段長為,由焦半徑公式,聯(lián)立求解.【詳解】解:由拋物線,可得,則,故其準(zhǔn)線方程為,拋物線的準(zhǔn)線過雙曲線的左焦點(diǎn),.拋物線的準(zhǔn)線被雙曲線截得的線段長為,,又,,則雙曲線的離心率為.故選:.【點(diǎn)睛】本題考查拋物線的性質(zhì)及利用過雙曲線的焦點(diǎn)的弦長求離心率.弦過焦點(diǎn)時(shí),可結(jié)合焦半徑公式求解弦長.7.D【解析】

因?yàn)椋寓俨徽_;因?yàn)?,所以,,所以,所以函?shù)的圖象是軸對稱圖形,②正確;易知函數(shù)的最小正周期為,因?yàn)楹瘮?shù)的圖象關(guān)于直線對稱,所以只需研究函數(shù)在上的極大值與最小值即可.當(dāng)時(shí),,且,令,得,可知函數(shù)在處取得極大值為,③正確;因?yàn)?,所以,所以函?shù)的最小值為,④正確.故選D.8.B【解析】

由的單調(diào)性,可判斷p是真命題;分類討論打開絕對值,可得q是假命題,依次分析即得解【詳解】由函數(shù)是R上的增函數(shù),知命題p是真命題.對于命題q,當(dāng),即時(shí),;當(dāng),即時(shí),,由,得,無解,因此命題q是假命題.所以為假命題,A錯(cuò)誤;為真命題,B正確;為假命題,C錯(cuò)誤;為真命題,D錯(cuò)誤.故選:B【點(diǎn)睛】本題考查了命題的邏輯連接詞,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9.A【解析】

由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個(gè)正放的正四面體,一個(gè)倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點(diǎn)睛】本題主要考查充分條件、必要條件的判定,意在考查學(xué)生的邏輯推理能力.10.D【解析】

根據(jù)復(fù)數(shù)相等,可得,然后根據(jù)復(fù)數(shù)模的計(jì)算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算,考驗(yàn)計(jì)算,屬基礎(chǔ)題.11.C【解析】

化簡復(fù)數(shù)為、的形式,可以確定對應(yīng)的點(diǎn)位于的象限.【詳解】解:復(fù)數(shù)故復(fù)數(shù)對應(yīng)的坐標(biāo)為位于第三象限故選:.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的運(yùn)算,復(fù)數(shù)和復(fù)平面內(nèi)點(diǎn)的對應(yīng)關(guān)系,屬于基礎(chǔ)題.12.A【解析】

作出可行域,由,可得.當(dāng)直線過可行域內(nèi)的點(diǎn)時(shí),最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當(dāng)直線過可行域內(nèi)的點(diǎn)時(shí),最大,即最大,最大值為2.解方程組,得..,當(dāng)且僅當(dāng),即時(shí),等號成立.的最小值為8.故選:.【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查基本不等式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.,,【解析】

化簡函數(shù)的解析式,利用余弦函數(shù)的圖象和性質(zhì)求解即可.【詳解】函數(shù),最小正周期,令,,可得,,所以單調(diào)遞增區(qū)間是,,.故答案為:,,,.【點(diǎn)睛】本題主要考查了二倍角的公式的應(yīng)用,余弦函數(shù)的圖象與性質(zhì),屬于中檔題.14.-6【解析】

由可求,然后根據(jù)向量數(shù)量積的坐標(biāo)表示可求.【詳解】∵=(1,2),=(-3,1),∴=(-4,-1),則=1×(-4)+2×(-1)=-6故答案為-6【點(diǎn)睛】本題主要考查了向量數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)試題.15.2025【解析】

利用賦值法,結(jié)合展開式中各項(xiàng)系數(shù)之和列方程,由此求得的值.再利用二項(xiàng)式展開式的通項(xiàng)公式,求得展開式中的系數(shù).【詳解】依題意,令,解得,所以,則二項(xiàng)式的展開式的通項(xiàng)為:令,得,所以的系數(shù)為.故答案為:2025【點(diǎn)睛】本小題主要考查二項(xiàng)式展開式各項(xiàng)系數(shù)之和,考查二項(xiàng)式展開式指定項(xiàng)系數(shù)的求法,屬于基礎(chǔ)題.16.【解析】

通過雙曲線的標(biāo)準(zhǔn)方程,求解,,即可得到所求的結(jié)果.【詳解】由雙曲線,可得,,則,所以雙曲線的焦點(diǎn)坐標(biāo)是,漸近線方程為:.故答案為:;.【點(diǎn)睛】本題主要考查了雙曲線的簡單性質(zhì)的應(yīng)用,考查了運(yùn)算能力,屬于容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1).(2)答案見解析【解析】

(1)利用絕對值不等式的性質(zhì)即可求得最小值;(2)利用分析法,只需證明,兩邊平方后結(jié)合即可得證.【詳解】(1),當(dāng)且僅當(dāng)時(shí)取等號,∴的最小值;(2)證明:依題意,,要證,即證,即證,即證,即證,又可知,成立,故原不等式成立.【點(diǎn)睛】本題考查用絕對值三角不等式求最值,考查用分析法證明不等式,在不等式不易證明時(shí),可通過執(zhí)果索因的方法尋找結(jié)論成立的充分條件,完成證明,這就是分析法.18.(1);(2)見解析.【解析】

(1)已知點(diǎn)軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,由此可得曲線的方程;(2)設(shè)直線方程為,,則,設(shè),由直線方程與拋物線方程聯(lián)立消元應(yīng)用韋達(dá)定理得,,由,,用橫坐標(biāo)表示出,然后計(jì)算,并代入,可得結(jié)論.【詳解】(1)設(shè)動(dòng)圓圓心,由拋物線定義知:點(diǎn)軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,設(shè)其方程為,則,解得.∴曲線的方程為;(2)證明:設(shè)直線方程為,,則,設(shè),由得,①,則,,②,由,,得,,整理得,,∴,代入②得:.【點(diǎn)睛】本題考查求曲線方程,考查拋物線的定義,考查直線與拋物線相交問題中的定值問題.解題方法是設(shè)而不求的思想方法,即設(shè)交點(diǎn)坐標(biāo),設(shè)直線方程,直線方程代入拋物線(或圓錐曲線)方程得一元二次方程,應(yīng)用韋達(dá)定理得,,代入題中其他條件所求式子中化簡變形.19.(1),;(2).【解析】

(1)先把參數(shù)方程化成普通方程,再利用極坐標(biāo)的公式把普通方程化成極坐標(biāo)方程;(2)先利用極坐標(biāo)求出弦長,再求高,最后求的面積.【詳解】(1)曲線的極坐標(biāo)方程為:,因?yàn)榍€的普通方程為:,曲線的極坐標(biāo)方程為;(2)由(1)得:點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,,點(diǎn)到射線的距離為的面積為.【點(diǎn)睛】本題考查普通方程、參數(shù)方程與極坐標(biāo)方程之間的互化,同時(shí)也考查了利用極坐標(biāo)方程求解面積問題,考查計(jì)算能力,屬于中等題.20.(1)列聯(lián)表見解析,有的把握認(rèn)為患心肺疾病與性別有關(guān),理由見解析;(2).【解析】

(1)結(jié)合題意完善列聯(lián)表,計(jì)算出的觀測值,對照臨界值表可得出結(jié)論;(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、、,利用列舉法列舉出所有的基本事件,并確定事件“所選的人中至少有一位從事的是戶外作業(yè)”所包含的基本事件數(shù),利用古典概型的概率公式可取得所求事件的概率.【詳解】(1)由于在全部人中隨機(jī)抽取人,抽到患心肺疾病的人的概率為,所以人中患心肺疾病的人數(shù)為人,故可將列聯(lián)表補(bǔ)充如下:患心肺疾病不患心肺疾病合計(jì)男女合計(jì).故有的把握認(rèn)為患心肺疾病與性別有關(guān);(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、、.從中選取三人共有以下種情形:、、、、、、、、、.其中至少有一位從事的是戶外作業(yè)的有種情形,分別為:、、、、、、、、,所以所選的人中至少有一位從事的是戶外作業(yè)的概率為.【點(diǎn)睛】本題考查利用獨(dú)立性檢驗(yàn)的基本思想解決實(shí)際問題,同時(shí)也考查了利用列舉法求解古典概型的概率問題,考查計(jì)算能力,屬于中等題.21.(1)分布見解析,期望為;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論