版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
北京市海淀區(qū)北京57中2025屆高一上數(shù)學(xué)期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,其中,則()A. B.C. D.2.設(shè),則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件3.已知命題:,,則是()A., B.,C., D.,4.設(shè)a,b是兩條不同的直線,α,β是兩個不同的平面,則下列正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,,則5.表示集合中整數(shù)元素的個數(shù),設(shè),,則()A.5 B.4C.3 D.26.已知a>0,那么2+3a+4A.23 B.C.2+23 D.7.直三棱柱中,若,則異面直線與所成角的余弦值為A.0 B.C. D.8.設(shè),且,則()A. B.C. D.9.設(shè)函數(shù),若關(guān)于的方程有四個不同的解,,,,且,則的取值范圍是()A. B.C. D.10.三個數(shù),,的大小順序是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)函數(shù)fx=ex-1,x≥a-xx2-5x+6,x<a,則當(dāng)時,12.過正方體的頂點作直線,使與棱、、所成的角都相等,這樣的直線可以作_________條.13.我國采用的“密位制”是6000密位制,即將一個圓周分為6000等份,每一個等份是一個密位,那么120密位等于______rad14.已知角的頂點為坐標(biāo)原點,始邊為軸的正半軸,終邊經(jīng)過點,則___________.15.—個幾何體的三視圖如圖所示,則該幾何體的體積為__________16.已知函數(shù),且關(guān)于的方程有且僅有一個實數(shù)根,那實數(shù)的取值范圍為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(且)的圖象恒過點A,且點A在函數(shù)的圖象上.(1)求的最小值;(2)若,當(dāng)時,求的值域.18.(1)求函數(shù)的解析式;(2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并用函數(shù)單調(diào)性定義證明;(3)當(dāng)時,函數(shù)恒成立,求實數(shù)m的取值范圍19.已知集合,(1)當(dāng)時,求;(2)若,求a的取值范圍;20.(1)已知,且,求的值(2)已知,是關(guān)于x的方程的兩個實根,且,求的值21.已知全集,集合,.(1)當(dāng)時,求;(2)若,且,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】化簡已知條件,結(jié)合求得的值.【詳解】依題意,,所以,,由于,所以.故選:D2、A【解析】解絕對值不等式求解集,根據(jù)充分、必要性的定義判斷題設(shè)條件間的充分、必要關(guān)系.【詳解】由,可得,∴“”是“”的充分而不必要條件.故選:A.3、D【解析】根據(jù)命題的否定的定義寫出命題的否定,然后判斷【詳解】命題:,的否定是:,故選:D4、D【解析】由空間中直線、平面的位置關(guān)系逐一判斷即可得解.【詳解】解:由a,b是兩條不同的直線,α,β是兩個不同的平面,知:在A中,若,,則或,故A錯誤;在B中,若,,則,故B錯誤;在C中,若,,則或,故C錯誤;在D中,若,,,則由面面垂直的判定定理得,故D正確;故選:D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,屬中檔題5、C【解析】首先求出集合,再根據(jù)交集的定義求出,即可得解;【詳解】解:因為,,所以,則,,,所以;故選:C6、D【解析】利用基本不等式求解.【詳解】因為a>0,所以2+3a+4當(dāng)且僅當(dāng)3a=4a,即故選:D7、A【解析】連接,在正方形中,,又直三棱柱中,,即,所以面.所以,所以面,面,所以,即異面直線與所成角為90°,所以余弦值為0.故選A.8、C【解析】將等式變形后,利用二次根式的性質(zhì)判斷出,即可求出的范圍.【詳解】即故選:C【點睛】此題考查解三角函數(shù)方程,恒等變化后根據(jù)的關(guān)系即可求解,屬于簡單題目.9、A【解析】根據(jù)圖象可得:,,,.,則.令,,求函數(shù)的值域,即可得出結(jié)果.【詳解】畫出函數(shù)的大致圖象如下:根據(jù)圖象可得:若方程有四個不同的解,,,,且,則,,,.,,,則.令,,而函數(shù)在單調(diào)遞增,所以,則.故選:A.【點睛】本題考查函數(shù)的圖象與性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、數(shù)形結(jié)合思想,考查運算求解能力,求解時注意借助圖象分析問題,屬于中檔題.10、A【解析】由指數(shù)函數(shù)和對數(shù)函數(shù)單調(diào)性得出范圍,從而得出結(jié)果【詳解】,,;故選A【點睛】本題考查指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,熟記函數(shù)性質(zhì)是解題的關(guān)鍵,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、①.②.【解析】當(dāng)時得到,令,再利用定義法證明在上單調(diào)遞減,從而得到,令,,根據(jù)指數(shù)函數(shù)的性質(zhì)得到函數(shù)的單調(diào)性,即可求出的最小值,即可得到的最小值;分別求出與的零點,根據(jù)恰有兩個零點,即可求出的取值范圍;【詳解】解:當(dāng)時,令,,設(shè)且,則因為且,所以,,所以,所以,所以在上單調(diào)遞減,所以,令,,函數(shù)在定義域上單調(diào)遞增,所以,所以的最小值為;對于,令,即,解得,對于,令,即,解得或或,因為fx=ex-1,x≥a-xx2-5x+6,x<a恰有兩個零點,則和一定為的零點,不為的零點,所以,即;故答案為:;;12、【解析】將小正方體擴展成4個小正方體,根據(jù)直線夾角的定義即可判斷出符合條件的條數(shù)【詳解】解:設(shè)ABCD﹣A1B1C1D1邊長為1第一條:AC1是滿足條件的直線;第二條:延長C1D1到C1且D1C2=1,AC2是滿足條件的直線;第三條:延長C1B1到C3且B1C3=1,AC3是滿足條件的直線;第四條:延長C1A1到C4且C4A1,AC4是滿足條件的直線故答案為4【點睛】本題考查滿足條件的直線條數(shù)的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力,考查分類與整合思想,是基礎(chǔ)題13、##【解析】根據(jù)已知定義,結(jié)合弧度制的定義進行求解即可.【詳解】設(shè)120密位等于,所以有,故答案為:14、【解析】利用三角函數(shù)定義求出、的值,結(jié)合誘導(dǎo)公式可求得所求代數(shù)式的值.【詳解】由三角函數(shù)的定義可得,,因此,.故答案為:.15、30【解析】由三視圖可知這是一個下面是長方體,上面是個平躺著的五棱柱構(gòu)成的組合體長方體的體積為五棱柱的體積是故該幾何體的體積為點睛:本題主要考查的知識點是由三視圖求面積,體積.本題通過觀察三視圖這是一個下面是長方體,上面是個平躺著的五棱柱構(gòu)成的組合體,分別求出長方體和五棱柱的體積,然后相加可得答案16、【解析】利用數(shù)形結(jié)合的方法,將方程根的問題轉(zhuǎn)化為函數(shù)圖象交點的問題,觀察圖象即可得到結(jié)果.【詳解】作出的圖象,如下圖所示:∵關(guān)于的方程有且僅有一個實數(shù)根,∴函數(shù)的圖象與有且只有一個交點,由圖可知,則實數(shù)的取值范圍是.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)4;(2).【解析】(1)根據(jù)對數(shù)函數(shù)恒過定點(1,0)求出m和n的關(guān)系:,則利用轉(zhuǎn)化為基本不等式求最小值;(2)利用換元法令,將問題轉(zhuǎn)化為二次函數(shù)求值域問題即可.【小問1詳解】∵,∴函數(shù)的圖象恒過點.∵在函數(shù)圖象上,∴.∵,∴,,∴,,∴,當(dāng)且僅當(dāng)時等號成立,∴的最小值為4.【小問2詳解】當(dāng)時,,∵在上單調(diào)遞增,∴當(dāng)時,,令,則,,在上單調(diào)遞增,∴當(dāng)時,;當(dāng)時,.故所求函數(shù)的值域為.18、(1);(2)單調(diào)遞減;(3)【解析】(1)函數(shù)為奇函數(shù),則,再用待定系數(shù)法即可求出;(2)作差法:任意的兩個實數(shù),證明出;(3)要使則試題解析:(1)所以(2)由(1)問可得在區(qū)間上是單調(diào)遞減的證明:設(shè)任意的兩個實數(shù)又,,在區(qū)間上是單調(diào)遞減的;(3)由(2)知在區(qū)間上的最小值是要使則考點:1、待定系數(shù)法;2、函數(shù)的單調(diào)性;3、不等式恒成立問題.19、(1),(2)【解析】(1)計算得到,,計算得到答案.(2)所以,討論和兩種情況計算得到答案.【詳解】(1)因為,所以,因為,所以(2)因為,所以,當(dāng)時,,即;當(dāng)時,,即.綜上所述:a的取值范圍為.【點睛】本題考查了集合的運算,根據(jù)集合的包含關(guān)系求參數(shù),忽略掉空集是容易發(fā)生的錯誤.20、(1);(2)【解析】(1)先求出角,利用誘導(dǎo)公式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年租賃合同:房產(chǎn)、車輛、設(shè)備等租賃細節(jié)及合同標(biāo)的
- 智能臺燈課程設(shè)計 總結(jié)
- 搖擺式送料機構(gòu)課程設(shè)計
- 專題06 三角形(全等、相似)(2大易錯點分析+19個易錯點+易錯題通關(guān))-2024年中考數(shù)學(xué)考試易錯題(解析版)
- 端口掃描器課程設(shè)計
- 自然心教育愛課程設(shè)計
- 花卉拼貼課程設(shè)計
- 竹片銑槽機課程設(shè)計
- 液壓設(shè)計課程設(shè)計總結(jié)
- 2024藥品銷售個人工作總結(jié)(35篇)
- 2025年濟南鐵路局招聘筆試參考題庫含答案解析
- 2025年心內(nèi)科工作計劃
- 質(zhì)量是生產(chǎn)出來課件
- 2024-2025學(xué)年人教版七年級數(shù)學(xué)上冊期末模擬測試卷(含簡單答案)
- 2024-2030年中國家用小家電項目可行性研究報告
- 監(jiān)理對進度控制的目標(biāo)及方法措施
- 2024年內(nèi)科醫(yī)生年終工作總結(jié)參考(2篇)
- xx單位政務(wù)云商用密碼應(yīng)用方案V2.0
- 湖南省懷化市2023-2024學(xué)年七年級上學(xué)期語文期末試卷(含答案)
- 《廊坊市綠色建筑專項規(guī)劃(2020-2025)》
- 2024-2030年中國濕巾行業(yè)發(fā)展趨勢及競爭策略分析報告
評論
0/150
提交評論