湖北省黃岡市重點名校2025屆高三數(shù)學第一學期期末檢測試題含解析_第1頁
湖北省黃岡市重點名校2025屆高三數(shù)學第一學期期末檢測試題含解析_第2頁
湖北省黃岡市重點名校2025屆高三數(shù)學第一學期期末檢測試題含解析_第3頁
湖北省黃岡市重點名校2025屆高三數(shù)學第一學期期末檢測試題含解析_第4頁
湖北省黃岡市重點名校2025屆高三數(shù)學第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖北省黃岡市重點名校2025屆高三數(shù)學第一學期期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設i為虛數(shù)單位,若復數(shù),則復數(shù)z等于()A. B. C. D.02.設非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件3.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標原點),則雙曲線C的離心率為A. B. C. D.4.過拋物線的焦點的直線交該拋物線于,兩點,為坐標原點.若,則直線的斜率為()A. B. C. D.5.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.46.已知F為拋物線y2=4x的焦點,過點F且斜率為1的直線交拋物線于A,B兩點,則||FA|﹣|FB||的值等于()A. B.8 C. D.47.年某省將實行“”的新高考模式,即語文、數(shù)學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B. C. D.8.若雙曲線:繞其對稱中心旋轉后可得某一函數(shù)的圖象,則的離心率等于()A. B. C.2或 D.2或9.已知函數(shù),若,則下列不等關系正確的是()A. B.C. D.10.函數(shù)的圖象大致是()A. B.C. D.11.若函數(shù)恰有3個零點,則實數(shù)的取值范圍是()A. B. C. D.12.已知集合,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復數(shù),且滿足(其中為虛數(shù)單位),則____.14.在一塊土地上種植某種農(nóng)作物,連續(xù)5年的產(chǎn)量(單位:噸)分別為9.4,9.7,9.8,10.3,10.8.則該農(nóng)作物的年平均產(chǎn)量是______噸.15.記為等比數(shù)列的前n項和,已知,,則_______.16.若函數(shù)為自然對數(shù)的底數(shù))在和兩處取得極值,且,則實數(shù)的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)唐詩是中國文學的瑰寶.為了研究計算機上唐詩分類工作中檢索關鍵字的選取,某研究人員將唐詩分成7大類別,并從《全唐詩》48900多篇唐詩中隨機抽取了500篇,統(tǒng)計了每個類別及各類別包含“花”、“山”、“簾”字的篇數(shù),得到下表:愛情婚姻詠史懷古邊塞戰(zhàn)爭山水田園交游送別羈旅思鄉(xiāng)其他總計篇數(shù)100645599917318500含“山”字的篇數(shù)5148216948304271含“簾”字的篇數(shù)2120073538含“花”字的篇數(shù)606141732283160(1)根據(jù)上表判斷,若從《全唐詩》含“山”字的唐詩中隨機抽取一篇,則它屬于哪個類別的可能性最大,屬于哪個類別的可能性最小,并分別估計該唐詩屬于這兩個類別的概率;(2)已知檢索關鍵字的選取規(guī)則為:①若有超過95%的把握判斷“某字”與“某類別”有關系,則“某字”為“某類別”的關鍵字;②若“某字”被選為“某類別”關鍵字,則由其對應列聯(lián)表得到的的觀測值越大,排名就越靠前;設“山”“簾”“花”和“愛情婚姻”對應的觀測值分別為,,.已知,,請完成下面列聯(lián)表,并從上述三個字中選出“愛情婚姻”類別的關鍵字并排名.屬于“愛情婚姻”類不屬于“愛情婚姻”類總計含“花”字的篇數(shù)不含“花”的篇數(shù)總計附:,其中.0.050.0250.0103.8415.0246.63518.(12分)已知命題:,;命題:函數(shù)無零點.(1)若為假,求實數(shù)的取值范圍;(2)若為假,為真,求實數(shù)的取值范圍.19.(12分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點.(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.20.(12分)已知函數(shù),.(Ⅰ)當時,求曲線在處的切線方程;(Ⅱ)求函數(shù)在上的最小值;(Ⅲ)若函數(shù),當時,的最大值為,求證:.21.(12分)如圖,D是在△ABC邊AC上的一點,△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長.22.(10分)在四邊形中,,;如圖,將沿邊折起,連結,使,求證:(1)平面平面;(2)若為棱上一點,且與平面所成角的正弦值為,求二面角的大小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)復數(shù)除法的運算法則,即可求解.【詳解】.故選:B.【點睛】本題考查復數(shù)的代數(shù)運算,屬于基礎題.2、C【解析】

利用數(shù)量積的定義可得,即可判斷出結論.【詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.【點睛】本題主要考查平面向量數(shù)量積的應用,考查推理能力與計算能力,屬于基礎題.3、B【解析】

直線的傾斜角為,易得.設雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.4、D【解析】

根據(jù)拋物線的定義,結合,求出的坐標,然后求出的斜率即可.【詳解】解:拋物線的焦點,準線方程為,設,則,故,此時,即.則直線的斜率.故選:D.【點睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.5、D【解析】

圓心坐標為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當且僅當且即時取等號,故選:.【點睛】本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關系,考查運算能力,屬于基礎題.6、C【解析】

將直線方程代入拋物線方程,根據(jù)根與系數(shù)的關系和拋物線的定義即可得出的值.【詳解】F(1,0),故直線AB的方程為y=x﹣1,聯(lián)立方程組,可得x2﹣6x+1=0,設A(x1,y1),B(x2,y2),由根與系數(shù)的關系可知x1+x2=6,x1x2=1.由拋物線的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.【點睛】本題考查了拋物線的定義,直線與拋物線的位置關系,屬于中檔題.7、B【解析】

甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.8、C【解析】

由雙曲線的幾何性質與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結果.【詳解】由雙曲線的幾何性質與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點既可在軸,又可在軸上,所以或,或.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,函數(shù)的概念,考查了分類討論的數(shù)學思想.9、B【解析】

利用函數(shù)的單調(diào)性得到的大小關系,再利用不等式的性質,即可得答案.【詳解】∵在R上單調(diào)遞增,且,∴.∵的符號無法判斷,故與,與的大小不確定,對A,當時,,故A錯誤;對C,當時,,故C錯誤;對D,當時,,故D錯誤;對B,對,則,故B正確.故選:B.【點睛】本題考查分段函數(shù)的單調(diào)性、不等式性質的運用,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎題.10、C【解析】

根據(jù)函數(shù)奇偶性可排除AB選項;結合特殊值,即可排除D選項.【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項A,B;又∵當時,,故選:C.【點睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎題.11、B【解析】

求導函數(shù),求出函數(shù)的極值,利用函數(shù)恰有三個零點,即可求實數(shù)的取值范圍.【詳解】函數(shù)的導數(shù)為,令,則或,上單調(diào)遞減,上單調(diào)遞增,所以0或是函數(shù)y的極值點,函數(shù)的極值為:,函數(shù)恰有三個零點,則實數(shù)的取值范圍是:.故選B.【點睛】該題考查的是有關結合函數(shù)零點個數(shù),來確定參數(shù)的取值范圍的問題,在解題的過程中,注意應用導數(shù)研究函數(shù)圖象的走向,利用數(shù)形結合思想,轉化為函數(shù)圖象間交點個數(shù)的問題,難度不大.12、D【解析】

根據(jù)集合的基本運算即可求解.【詳解】解:,,,則故選:D.【點睛】本題主要考查集合的基本運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

計算出,兩個復數(shù)相等,實部與實部相等,虛部與虛部相等,列方程組求解.【詳解】,所以,所以.故答案為:-8【點睛】此題考查復數(shù)的基本運算和概念辨析,需要熟練掌握復數(shù)的運算法則.14、10【解析】

根據(jù)已知數(shù)據(jù)直接計算即得.【詳解】由題得,.故答案為:10【點睛】本題考查求平均數(shù),是基礎題.15、【解析】

設等比數(shù)列的公比為,將已知條件等式轉化為關系式,求解即可.【詳解】設等比數(shù)列的公比為,,.故答案為:.【點睛】本題考查等比數(shù)列通項的基本量運算,屬于基礎題.16、【解析】

先將函數(shù)在和兩處取得極值,轉化為方程有兩不等實根,且,再令,將問題轉化為直線與曲線有兩交點,且橫坐標滿足,用導數(shù)方法研究單調(diào)性,作出簡圖,求出時,的值,進而可得出結果.【詳解】因為,所以,又函數(shù)在和兩處取得極值,所以是方程的兩不等實根,且,即有兩不等實根,且,令,則直線與曲線有兩交點,且交點橫坐標滿足,又,由得,所以,當時,,即函數(shù)在上單調(diào)遞增;當,時,,即函數(shù)在和上單調(diào)遞減;當時,由得,此時,因此,由得.故答案為【點睛】本題主要考查導數(shù)的應用,已知函數(shù)極值點間的關系求參數(shù)的問題,通常需要將函數(shù)極值點,轉化為導函數(shù)對應方程的根,再轉化為直線與曲線交點的問題來處理,屬于??碱}型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)該唐詩屬于“山水田園”類別的可能性最大,屬于“其他”類別的可能性最??;屬于“山水田園”類別的概率約為;屬于“其他”類別的概率約為(2)填表見解析;選擇“花”,“簾”作為“愛情婚姻”類別的關鍵字,且排序為“花”,“簾”【解析】

(1)根據(jù)統(tǒng)計圖表算出頻率,比較大小即可判斷;(2)根據(jù)統(tǒng)計圖表完成列聯(lián)表,算出觀測值,查表判斷.【詳解】(1)由上表可知,該唐詩屬于“山水田園”類別的可能性最大,屬于“其他”類別的可能性最小屬于“山水田園”類別的概率約為;屬于“其他”類別的概率約為;(2)列聯(lián)表如下:屬于“愛情婚姻”類不屬于“愛情婚姻”類共計含“花”的篇數(shù)60100160不含“花”的篇數(shù)40300340共計100400500計算得:;因為,,所以有超過95%的把握判斷“花”字和“簾”字均與“愛情婚姻”有關系,故“花”和“簾”是“愛情婚姻”的關鍵字,而“山”不是;又因為,故選擇“花”,“簾”作為“愛情婚姻”類別的關鍵字,且排序為“花”,“簾”.【點睛】本題主要考查統(tǒng)計圖表、頻率與概率的關系、用樣本估計總體、獨立性檢驗等知識點.考查了學生對統(tǒng)計圖表的識讀與計算能力,考查了學生的數(shù)據(jù)分析、數(shù)學運算等核心素養(yǎng).18、(1)(2)【解析】

(1)為假,則為真,求導,利用導函數(shù)研究函數(shù)有零點條件得的取值范圍;(2)由為假,為真,知一真一假;分類討論列不等式組可解.【詳解】(1)依題意,為真,則無解,即無解;令,則,故當時,,單調(diào)遞增,當,,單調(diào)遞減,作出函數(shù)圖象如下所示,觀察可知,,即;(2)若為真,則,解得;由為假,為真,知一真一假;若真假,則實數(shù)滿足,則;若假真,則實數(shù)滿足,無解;綜上所述,實數(shù)的取值范圍為.【點睛】本題考查根據(jù)全(特)稱命題的真假求參數(shù)的問題.其思路:與全稱命題或特稱命題真假有關的參數(shù)取值范圍問題的本質是恒成立問題或有解問題.解決此類問題時,一般先利用等價轉化思想將條件合理轉化,得到關于參數(shù)的方程或不等式(組),再通過解方程或不等式(組)求出參數(shù)的值或范圍.19、(Ⅰ)詳見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接交于,得,所以面,又,得面,即可利用面面平行的判定定理,證得結論;(Ⅱ)如圖,以O為坐標原點,建立空間直角坐標系,求的平面的一個法向量,利用向量和向量夾角公式,即可求解與平面所成角的正弦值.試題解析:(Ⅰ)連接BD交AC于O,易知O是BD的中點,故OG//BE,BE面BEF,OG在面BEF外,所以OG//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC與OG相交于點O,面ACG有兩條相交直線與面BEF平行,故面ACG∥面BEF;(Ⅱ)如圖,以O為坐標原點,分別以OC、OD、OF為x、y、z軸建立空間直角坐標系,則,,,,,,,設面ABF的法向量為,依題意有,,令,,,,,直線AD與面ABF成的角的正弦值是.20、(Ⅰ)(Ⅱ)見解析;(Ⅲ)見解析.【解析】試題分析:(Ⅰ)由題,所以故,,代入點斜式可得曲線在處的切線方程;(Ⅱ)由題(1)當時,在上單調(diào)遞增.則函數(shù)在上的最小值是(2)當時,令,即,令,即(i)當,即時,在上單調(diào)遞增,所以在上的最小值是(ii)當,即時,由的單調(diào)性可得在上的最小值是(iii)當,即時,在上單調(diào)遞減,在上的最小值是(Ⅲ)當時,令,則是單調(diào)遞減函數(shù).因為,,所以在上存在,使得,即討論可得在上單調(diào)遞增,在上單調(diào)遞減.所以當時,取得最大值是因為,所以由此可證試題解析:(Ⅰ)因為函數(shù),且,所以,所以所以,所以曲線在處的切線方程是,即(Ⅱ)因為函數(shù),所以(1)當時,,所以在上單調(diào)遞增.所以函數(shù)在上的最小值是(2)當時,令,即,所以令,即,所以(i)當,即時,在上單調(diào)遞增,所以在上的最小值是(ii)當,即時,在上單調(diào)遞減,在上單調(diào)遞增,所以在上的最小值是(iii)當,即時,在上單調(diào)遞減,所以在上的最小值是綜上所述,當時,在上的最小值是當時,在上的最小值是當時,在上的最小值是(Ⅲ)因為函數(shù),所以所以當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論