沈陽(yáng)外國(guó)語(yǔ)學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第1頁(yè)
沈陽(yáng)外國(guó)語(yǔ)學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第2頁(yè)
沈陽(yáng)外國(guó)語(yǔ)學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第3頁(yè)
沈陽(yáng)外國(guó)語(yǔ)學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第4頁(yè)
沈陽(yáng)外國(guó)語(yǔ)學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

沈陽(yáng)外國(guó)語(yǔ)學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末考試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,而是逐項(xiàng)差數(shù)之差或者高次差相等.對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有一個(gè)高階等差數(shù)列,其前7項(xiàng)分別為1,5,11,21,37,61,95,則該數(shù)列的第8項(xiàng)為()A.99 B.131C.139 D.1412.已知正方形的四個(gè)頂點(diǎn)都在橢圓上,若的焦點(diǎn)F在正方形的外面,則的離心率的取值范圍是()A. B.C. D.3.設(shè)、分別為具有公共焦點(diǎn)與的橢圓和雙曲線的離心率,為兩曲線的一個(gè)公共點(diǎn),且滿足,則的值為()A. B.C. D.4.已知分別是等差數(shù)列的前項(xiàng)和,且,則()A. B.C. D.5.與直線關(guān)于軸對(duì)稱的直線的方程為()A. B.C. D.6.對(duì)于兩個(gè)平面、,“內(nèi)有三個(gè)點(diǎn)到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知直線的斜率為1,直線的傾斜角比直線的傾斜角小15°,則直線的斜率為()A.-1 B.C. D.18.在中,內(nèi)角所對(duì)的邊為,若,,,則()A. B.C. D.9.已知空間向量,,,下列命題中正確的個(gè)數(shù)是()①若與共線,與共線,則與共線;②若,,非零且共面,則它們所在的直線共面;⑧若,,不共面,那么對(duì)任意一個(gè)空間向量,存在唯一有序?qū)崝?shù)組,使得;④若,不共線,向量,則可以構(gòu)成空間的一個(gè)基底.A.0 B.1C.2 D.310.已知,若,則的取值范圍為()A. B.C. D.11.已知A,B,C,D是同一球面上的四個(gè)點(diǎn),其中是正三角形,平面,,則該球的表面積為()A. B.C. D.12.已知空間向量,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若等比數(shù)列的前n項(xiàng)和為,且,則__________.14.矩形ABCD中,,在CD邊上任取一點(diǎn)M,則的最大邊是AB的概率為_(kāi)_____15.與圓外切于原點(diǎn),且被y軸截得的弦長(zhǎng)為8的圓的標(biāo)準(zhǔn)方程為_(kāi)_________16.已知函數(shù),,若,,使得,則實(shí)數(shù)a的取值范圍是______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知,經(jīng)過(guò)點(diǎn)的直線與橢圓交于、兩點(diǎn),若原點(diǎn)到直線的距離為,且,求直線的方程.18.(12分)已知橢圓的兩焦點(diǎn)為、,P為橢圓上一點(diǎn),且(1)求此橢圓的方程;(2)若點(diǎn)P在第二象限,,求的面積19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)當(dāng)時(shí),求函數(shù)在內(nèi)的零點(diǎn)個(gè)數(shù).20.(12分)已知函數(shù).(1)當(dāng)時(shí),解不等式;(2)若不等式的解集為,求實(shí)數(shù)的取值范圍.21.(12分)某餐館將推出一種新品特色菜,為更精準(zhǔn)確定最終售價(jià),這種菜按以下單價(jià)各試吃1天,得到如下數(shù)據(jù):(1)求銷量關(guān)于的線性回歸方程;(2)預(yù)計(jì)今后的銷售中,銷量與單價(jià)服從(1)中的線性回歸方程,已知每份特色菜的成本是15元,為了獲得最大利潤(rùn),該特色菜的單價(jià)應(yīng)定為多少元?(附:,)22.(10分)2020年3月20日,中共中央、國(guó)務(wù)院印發(fā)了《關(guān)于全面加強(qiáng)新時(shí)代大中小學(xué)勞動(dòng)教育的意見(jiàn)》(以下簡(jiǎn)稱《意見(jiàn)》),《意見(jiàn)》中確定了勞動(dòng)教育內(nèi)容要求,要求普通高中要注重圍繞豐富職業(yè)體驗(yàn),開(kāi)展服務(wù)性勞動(dòng)、參加生產(chǎn)勞動(dòng),使學(xué)生熟練掌握一定勞動(dòng)技能,理解勞動(dòng)創(chuàng)造價(jià)值,具有勞動(dòng)自立意識(shí)和主動(dòng)服務(wù)他人、服務(wù)社會(huì)的情懷.我市某中學(xué)鼓勵(lì)學(xué)生暑假期間多參加社會(huì)公益勞動(dòng),在實(shí)踐中讓學(xué)生利用所學(xué)知識(shí)技能,服務(wù)他人和社會(huì),強(qiáng)化社會(huì)責(zé)任感,為了調(diào)查學(xué)生參加公益勞動(dòng)的情況,學(xué)校從全體學(xué)生中隨機(jī)抽取100名學(xué)生,經(jīng)統(tǒng)計(jì)得到他們參加公益勞動(dòng)的總時(shí)間均在15~65小時(shí)內(nèi),其數(shù)據(jù)分組依次為:,,,,,得到頻率分布直方圖如圖所示,其中(1)求,的值,估計(jì)這100名學(xué)生參加公益勞動(dòng)的總時(shí)間的平均數(shù)(同一組中的每一個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替);(2)學(xué)校要在參加公益勞動(dòng)總時(shí)間在、這兩組的學(xué)生中用分層抽樣的方法選取5人進(jìn)行感受交流,再?gòu)倪@5人中隨機(jī)抽取2人進(jìn)行感受分享,求這2人來(lái)自不同組的概率

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)題中所給高階等差數(shù)列定義,找出其一般規(guī)律即可求解.【詳解】設(shè)該高階等差數(shù)列的第8項(xiàng)為,根據(jù)所給定義,用數(shù)列的后一項(xiàng)減去前一項(xiàng)得到一個(gè)數(shù)列,得到的數(shù)列也用后一項(xiàng)減去前一項(xiàng)得到一個(gè)數(shù)列,即得到了一個(gè)等差數(shù)列,如圖:由圖可得,則.故選:D2、C【解析】如圖由題可得,進(jìn)而可得,即求.【詳解】如圖根據(jù)對(duì)稱性,點(diǎn)D在直線y=x上,可設(shè),則,∴,可得,,即,又解得.故選:C.3、A【解析】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的實(shí)半軸長(zhǎng)為,不妨設(shè),利用橢圓和雙曲線的定義可得出,再利用勾股定理可求得結(jié)果.【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的實(shí)半軸長(zhǎng)為,不妨設(shè),由橢圓和雙曲線的定義可得,所以,,設(shè),因?yàn)?,則,由勾股定理得,即,整理得,故.故選:A.4、D【解析】利用及等差數(shù)列的性質(zhì)進(jìn)行求解.【詳解】分別是等差數(shù)列的前項(xiàng)和,故,且,故,故選:D5、D【解析】點(diǎn)關(guān)于x軸對(duì)稱,橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù),據(jù)此即可求解.【詳解】設(shè)(x,y)是與直線關(guān)于軸對(duì)稱的直線上任意一點(diǎn),則(x,-y)在上,故,∴與直線關(guān)于軸對(duì)稱的直線的方程為.故選:D.6、B【解析】根據(jù)平面的性質(zhì)分別判斷充分性和必要性.【詳解】充分性:若內(nèi)有三個(gè)點(diǎn)到的距離相等,當(dāng)這三個(gè)點(diǎn)不在一條直線上時(shí),可得;當(dāng)這三個(gè)點(diǎn)在一條直線上時(shí),則、平行或相交,故充分性不成立;必要性:若,則內(nèi)每個(gè)點(diǎn)到的距離相等,故必要性成立,所以“內(nèi)有三個(gè)點(diǎn)到的距離相等”是“”的必要不充分條件.故選:B.7、C【解析】根據(jù)直線的斜率求出其傾斜角可求得答案.【詳解】設(shè)直線的傾斜角為,所以,因?yàn)?,所以,因?yàn)橹本€的傾斜角比直線的傾斜角小15°,所以直線的傾斜角為,則直線的斜率為.故選:C8、B【解析】利用正弦定理角化邊得到,再利用余弦定理構(gòu)造方程求得結(jié)果.【詳解】,,由余弦定理得:,,.故選:B.9、B【解析】用向量共線或共面的基本定理即可判斷.【詳解】若與,與共線,,則不能判定,故①錯(cuò)誤;若非零向量共面,則向量可以在一個(gè)與組成的平面平行的平面上,故②錯(cuò)誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個(gè)基底,故④錯(cuò)誤;故選:C.10、C【解析】根據(jù)題意,由為原點(diǎn)到直線上點(diǎn)的距離的平方,再根據(jù)點(diǎn)到直線垂線段最短,即可求得范圍.【詳解】由,,視為原點(diǎn)到直線上點(diǎn)的距離的平方,根據(jù)點(diǎn)到直線垂線段最短,可得,所有的取值范圍為,故選:C.11、C【解析】由題意畫(huà)出幾何體的圖形,把、、、擴(kuò)展為三棱柱,上下底面中心連線的中點(diǎn)與的距離為球的半徑,由此能求出球的表面積【詳解】把、、、擴(kuò)展為三棱柱,上下底面中心連線的中點(diǎn)與的距離為球的半徑,,,是正三角形,,,球的表面積為故選:C12、C【解析】直接利用向量的坐標(biāo)運(yùn)算法則求解即可【詳解】因?yàn)椋?,所以,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】根據(jù)題意和等比數(shù)列的求和公式,求得,結(jié)合求和公式,即可求解.【詳解】因?yàn)椋魰r(shí),可得,故,所以,化簡(jiǎn)得,整理得,解得或,因?yàn)椋獾?,所?故答案為:.14、【解析】先利用勾股定理得出滿足條件的長(zhǎng)度,再結(jié)合幾何概型的概率公式得出答案.【詳解】設(shè),當(dāng)時(shí),,;當(dāng)時(shí),,所以當(dāng)?shù)降木嚯x都大于時(shí),的最大邊是AB,所以的最大邊是AB的概率為.故答案為:15、;【解析】設(shè)所求圓的圓心為,根據(jù)兩圓外切于原點(diǎn)可知兩圓心與原點(diǎn)共線,再根據(jù)弦長(zhǎng)列出方程組求出即可.【詳解】設(shè)所求圓的圓心為,因?yàn)閳A的圓心為,與原點(diǎn)連線的斜率為,又所求圓與已知圓外切于原點(diǎn),,①所以所求圓的半徑滿足,又被y軸截得的弦長(zhǎng)為8,②由①②解得,所以圓的方程為.故答案為:16、【解析】先求出兩函數(shù)在上的值域,再由已知條件可得,且,列不等式組可求得結(jié)果【詳解】由,得,當(dāng)時(shí),,所以在上單調(diào)遞減,所以,即,由,得,當(dāng)時(shí),,所以在上單調(diào)遞增,所以,即,因?yàn)椋?,使得,所以,解得,故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)由已知條件可得出關(guān)于、、的方程組,求出這三個(gè)量的值,由此可得出橢圓的標(biāo)準(zhǔn)方程;(2)分析可知直線的斜率存在且不為零,設(shè)直線的方程為,由點(diǎn)到直線的距離公式可得出,設(shè)點(diǎn)、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由可得出,代入韋達(dá)定理求出、的值,由此可得出直線的方程.【詳解】(1)設(shè)橢圓的焦距為,則,解得,因此,橢圓的標(biāo)準(zhǔn)方程為;(2)若直線斜率不存在,則直線過(guò)原點(diǎn),不合乎題意.所以,直線的斜率存在,設(shè)斜率為,設(shè)直線方程為,設(shè)、,原點(diǎn)到直線的距離為,,即①.聯(lián)立直線與橢圓方程可得,則,則,由韋達(dá)定理可得,.,則為線段的中點(diǎn),所以,,,得,,所以,,整理可得,解得,即,,因此,直線的方程為或.【點(diǎn)睛】方法點(diǎn)睛:利用韋達(dá)定理法解決直線與圓錐曲線相交問(wèn)題的基本步驟如下:(1)設(shè)直線方程,設(shè)交點(diǎn)坐標(biāo)為、;(2)聯(lián)立直線與圓錐曲線的方程,得到關(guān)于(或)的一元二次方程,必要時(shí)計(jì)算;(3)列出韋達(dá)定理;(4)將所求問(wèn)題或題中的關(guān)系轉(zhuǎn)化為、的形式;(5)代入韋達(dá)定理求解.18、(1);(2).【解析】(1)由題可得,根據(jù)橢圓的定義,求得,進(jìn)而求得的值,即可求解;(2)由題可得直線方程為,聯(lián)立橢圓方程可得點(diǎn)P,利用三角形的面積公式,即求.【小問(wèn)1詳解】設(shè)橢圓的標(biāo)準(zhǔn)方程為,焦距為,由題可得,,所以,可得,即,則,所以橢圓的標(biāo)準(zhǔn)方程為【小問(wèn)2詳解】設(shè)點(diǎn)坐標(biāo)為,,,∵,∴所在的直線方程為,則解方程組,可得,∴.19、(1)當(dāng),在單調(diào)遞增;當(dāng),在單調(diào)遞增,在單調(diào)遞減.(2)0.【解析】(1)求得,對(duì)參數(shù)分類討論,即可由每種情況下的正負(fù)確定函數(shù)的單調(diào)性;(2)根據(jù)題意求得,利用進(jìn)行放縮,只需證即,再利用導(dǎo)數(shù)通過(guò)證明從而得到恒成立,則問(wèn)題得解.【小問(wèn)1詳解】以為,其定義域?yàn)?,又,故?dāng)時(shí),,在單調(diào)遞增;當(dāng)時(shí),令,可得,且令,解得,令,解得,故在單調(diào)遞增,在單調(diào)遞減.綜上所述:當(dāng),在單調(diào)遞增;當(dāng),在單調(diào)遞增,在單調(diào)遞減.【小問(wèn)2詳解】因?yàn)?,故可得,則,;下證恒成立,令,則,故在單調(diào)遞減,又當(dāng)時(shí),,故在恒成立,即;因?yàn)?,故,令,下證在恒成立,要證恒成立,即證,又,故即證,令,則,令,解得,此時(shí)該函數(shù)單調(diào)遞增,令,解得,此時(shí)該函數(shù)單調(diào)遞減,又當(dāng)時(shí),,也即;令,則,令,解得,此時(shí)該函數(shù)單調(diào)遞減,令,解得,此時(shí)該函數(shù)單調(diào)遞增,又當(dāng)時(shí),,也即;又,故恒成立,則在恒成立,又,故當(dāng)時(shí),恒成立,則在上的零點(diǎn)個(gè)數(shù)是.【點(diǎn)睛】本題考察利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,以及函數(shù)零點(diǎn)問(wèn)題的處理;本題第二問(wèn)處理的關(guān)鍵是通過(guò)分離參數(shù)和構(gòu)造函數(shù),證明恒成立,屬綜合困難題.20、(1);(2).【解析】(1)將不等式分解因式,即可求得不等式解集;(2)根據(jù)不等式解集,考慮其對(duì)應(yīng)二次函數(shù)的特征,即可求出參數(shù)的范圍.【小問(wèn)1詳解】當(dāng)時(shí),即,也即,則,解得或,故不等式解集為.【小問(wèn)2詳解】不等式的解集為,即的解集為,也即的解集為,故其對(duì)應(yīng)二次函數(shù)的,解得.故實(shí)數(shù)的取值范圍為:.21、(1)(2)24【解析】(1)求出,的值,根據(jù)公式求出的值,代入公式即可求出回歸直線方程(2)根據(jù)(1)的結(jié)論,求出利潤(rùn),根據(jù)二次函數(shù)的性質(zhì),即可求解【詳解】解:(1)由題意得,,,,得,,所以關(guān)于的線性回歸方程為:.(2)由題意得,每份菜獲得的利潤(rùn),∴當(dāng)時(shí),取最大值,∴單價(jià)應(yīng)定為24元,可獲得最大利潤(rùn).【點(diǎn)睛】本題考查回歸直線的求法與應(yīng)用,著重考查計(jì)算化簡(jiǎn)的能力,屬基礎(chǔ)題22、(1),;平均數(shù)為40.2;(2)【解析】(1)根據(jù)矩形面積和為1,求的值,再根據(jù)頻率分布直方圖求平均數(shù);(2)首先利用分層抽樣,在中抽取3人,在中抽取2人,再編號(hào),列舉基本事件,求概率,或者利用組合公式,求古典概型概率.詳解】(1)依題意,,故又因?yàn)?,所以,所求平均?shù)為(小時(shí))所以估計(jì)這100名學(xué)生參加公益勞動(dòng)的總時(shí)間

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論