備戰(zhàn)中考數(shù)學(xué)備考之平行四邊形壓軸突破訓(xùn)練∶培優(yōu)易錯試卷篇含答案_第1頁
備戰(zhàn)中考數(shù)學(xué)備考之平行四邊形壓軸突破訓(xùn)練∶培優(yōu)易錯試卷篇含答案_第2頁
備戰(zhàn)中考數(shù)學(xué)備考之平行四邊形壓軸突破訓(xùn)練∶培優(yōu)易錯試卷篇含答案_第3頁
備戰(zhàn)中考數(shù)學(xué)備考之平行四邊形壓軸突破訓(xùn)練∶培優(yōu)易錯試卷篇含答案_第4頁
備戰(zhàn)中考數(shù)學(xué)備考之平行四邊形壓軸突破訓(xùn)練∶培優(yōu)易錯試卷篇含答案_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

備戰(zhàn)中考數(shù)學(xué)備考之平行四邊形壓軸突破訓(xùn)練∶培優(yōu)易錯試卷篇含答案(1)一、平行四邊形1.問題發(fā)現(xiàn):()如圖①,點為平行四邊形內(nèi)一點,請過點畫一條直線,使其同時平分平行四邊形的面積和周長.問題探究:()如圖②,在平面直角坐標(biāo)系中,矩形的邊、分別在軸、軸正半軸上,點坐標(biāo)為.已知點為矩形外一點,請過點畫一條同時平分矩形面積和周長的直線,說明理由并求出直線,說明理由并求出直線被矩形截得線段的長度.問題解決:()如圖③,在平面直角坐標(biāo)系中,矩形的邊、分別在軸、軸正半軸上,軸,軸,且,,點為五邊形內(nèi)一點.請問:是否存在過點的直線,分別與邊與交于點、,且同時平分五邊形的面積和周長?若存在,請求出點和點的坐標(biāo):若不存在,請說明理由.【答案】(1)作圖見解析;(2),;(3),.【解析】試題分析:(1)連接AC、BD交于點O,作直線PO,直線PO將平行四邊形ABCD的面積和周長分別相等的兩部分.(2)連接AC,BD交于點,過、P點的直線將矩形ABCD的面積和周長分為分別相等的兩部分.(3)存在,直線平分五邊形面積、周長.試題解析:()作圖如下:()∵,,∴設(shè),,,∴,交軸于,交于,.()存在,直線平分五邊形面積、周長.∵在直線上,∴連交、于點、,設(shè),,,,∴直線,聯(lián)立,得,∴,.2.操作:如圖,邊長為2的正方形ABCD,點P在射線BC上,將△ABP沿AP向右翻折,得到△AEP,DE所在直線與AP所在直線交于點F.探究:(1)如圖1,當(dāng)點P在線段BC上時,①若∠BAP=30°,求∠AFE的度數(shù);②若點E恰為線段DF的中點時,請通過運算說明點P會在線段BC的什么位置?并求出此時∠AFD的度數(shù).歸納:(2)若點P是線段BC上任意一點時(不與B,C重合),∠AFD的度數(shù)是否會發(fā)生變化?試證明你的結(jié)論;猜想:(3)如圖2,若點P在BC邊的延長線上時,∠AFD的度數(shù)是否會發(fā)生變化?試在圖中畫出圖形,并直接寫出結(jié)論.【答案】(1)①45°;②BC的中點,45°;(2)不會發(fā)生變化,證明參見解析;(3)不會發(fā)生變化,作圖參見解析.【解析】試題分析:(1)當(dāng)點P在線段BC上時,①由折疊得到一對角相等,再利用正方形性質(zhì)求出∠DAE度數(shù),在三角形AFD中,利用內(nèi)角和定理求出所求角度數(shù)即可;②由E為DF中點,得到P為BC中點,如圖1,連接BE交AF于點O,作EG∥AD,得EG∥BC,得到AF垂直平分BE,進而得到三角形BOP與三角形EOG全等,利用全等三角形對應(yīng)邊相等得到BP=EG=1,得到P為BC中點,進而求出所求角度數(shù)即可;(2)若點P是線段BC上任意一點時(不與B,C重合),∠AFD的度數(shù)不會發(fā)生變化,作AG⊥DF于點G,如圖1(a)所示,利用折疊的性質(zhì)及三線合一性質(zhì),根據(jù)等式的性質(zhì)求出∠1+∠2的度數(shù),即為∠FAG度數(shù),即可求出∠F度數(shù);(3)作出相應(yīng)圖形,如圖2所示,若點P在BC邊的延長線上時,∠AFD的度數(shù)不會發(fā)生變化,理由為:作AG⊥DE于G,得∠DAG=∠EAG,設(shè)∠DAG=∠EAG=α,根據(jù)∠FAE為∠BAE一半求出所求角度數(shù)即可.試題解析:(1)①當(dāng)點P在線段BC上時,∵∠EAP=∠BAP=30°,∴∠DAE=90°﹣30°×2=30°,在△ADE中,AD=AE,∠DAE=30°,∴∠ADE=∠AED=(180°﹣30°)÷2=75°,在△AFD中,∠FAD=30°+30°=60°,∠ADF=75°,∴∠AFE=180°﹣60°﹣75°=45°;②點E為DF的中點時,P也為BC的中點,理由如下:如圖1,連接BE交AF于點O,作EG∥AD,得EG∥BC,∵EG∥AD,DE=EF,∴EG=AD=1,∵AB=AE,∴點A在線段BE的垂直平分線上,同理可得點P在線段BE的垂直平分線上,∴AF垂直平分線段BE,∴OB=OE,∵GE∥BP,∴∠OBP=∠OEG,∠OPB=∠OGE,∴△BOP≌△EOG,∴BP=EG=1,即P為BC的中點,∴∠DAF=90°﹣∠BAF,∠ADF=45°+∠BAF,∴∠AFD=180°﹣∠DAF﹣∠ADF=45°;(2)∠AFD的度數(shù)不會發(fā)生變化,作AG⊥DF于點G,如圖1(a)所示,在△ADE中,AD=AE,AG⊥DE,∵AG平分∠DAE,即∠2=∠DAG,且∠1=∠BAP,∴∠1+∠2=×90°=45°,即∠FAG=45°,則∠AFD=90°﹣45°=45°;(3)如圖2所示,∠AFE的大小不會發(fā)生變化,∠AFE=45°,作AG⊥DE于G,得∠DAG=∠EAG,設(shè)∠DAG=∠EAG=α,∴∠BAE=90°+2α,∴∠FAE=∠BAE=45°+α,∴∠FAG=∠FAE﹣∠EAG=45°,在Rt△AFG中,∠AFE=90°﹣45°=45°.考點:1.正方形的性質(zhì);2.折疊性質(zhì);3.全等三角形的判定與性質(zhì).3.在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點O(0,0),點A(5,0),點B(0,3).以點A為中心,順時針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點O,B,C的對應(yīng)點分別為D,E,F(xiàn).(1)如圖①,當(dāng)點D落在BC邊上時,求點D的坐標(biāo);(2)如圖②,當(dāng)點D落在線段BE上時,AD與BC交于點H.①求證△ADB≌△AOB;②求點H的坐標(biāo).(3)記K為矩形AOBC對角線的交點,S為△KDE的面積,求S的取值范圍(直接寫出結(jié)果即可).【答案】(1)D(1,3);(2)①詳見解析;②H(,3);(3)≤S≤.【解析】【分析】(1)如圖①,在Rt△ACD中求出CD即可解決問題;(2)①根據(jù)HL證明即可;②,設(shè)AH=BH=m,則HC=BC-BH=5-m,在Rt△AHC中,根據(jù)AH2=HC2+AC2,構(gòu)建方程求出m即可解決問題;(3)如圖③中,當(dāng)點D在線段BK上時,△DEK的面積最小,當(dāng)點D在BA的延長線上時,△D′E′K的面積最大,求出面積的最小值以及最大值即可解決問題;【詳解】(1)如圖①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四邊形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋轉(zhuǎn)得到,∴AD=AO=5,在Rt△ADC中,CD==4,∴BD=BC-CD=1,∴D(1,3).(2)①如圖②中,由四邊形ADEF是矩形,得到∠ADE=90°,∵點D在線段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如圖②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,設(shè)AH=BH=m,則HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=,∴BH=,∴H(,3).(3)如圖③中,當(dāng)點D在線段BK上時,△DEK的面積最小,最小值=?DE?DK=×3×(5-)=,當(dāng)點D在BA的延長線上時,△D′E′K的面積最大,最大面積=×D′E′×KD′=×3×(5+)=.綜上所述,≤S≤.【點睛】本題考查四邊形綜合題、矩形的性質(zhì)、勾股定理、全等三角形的判定和性質(zhì)、旋轉(zhuǎn)變換等知識,解題的關(guān)鍵是理解題意,靈活運用所學(xué)知識解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題.4.如圖,四邊形ABCD中,∠BCD=∠D=90°,E是邊AB的中點.已知AD=1,AB=2.(1)設(shè)BC=x,CD=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(2)當(dāng)∠B=70°時,求∠AEC的度數(shù);(3)當(dāng)△ACE為直角三角形時,求邊BC的長.【答案】(1);(2)∠AEC=105°;(3)邊BC的長為2或.【解析】試題分析:(1)過A作AH⊥BC于H,得到四邊形ADCH為矩形.在△BAH中,由勾股定理即可得出結(jié)論.(2)取CD中點T,連接TE,則TE是梯形中位線,得ET∥AD,ET⊥CD,∠AET=∠B=70°.又AD=AE=1,得到∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,即可得到結(jié)論.(3)分兩種情況討論:①當(dāng)∠AEC=90°時,易知△CBE≌△CAE≌△CAD,得∠BCE=30°,解△ABH即可得到結(jié)論.②當(dāng)∠CAE=90°時,易知△CDA∽△BCA,由相似三角形對應(yīng)邊成比例即可得到結(jié)論.試題解析:解:(1)過A作AH⊥BC于H.由∠D=∠BCD=90°,得四邊形ADCH為矩形.在△BAH中,AB=2,∠BHA=90°,AH=y,HB=,∴,則(2)取CD中點T,聯(lián)結(jié)TE,則TE是梯形中位線,得ET∥AD,ET⊥CD,∴∠AET=∠B=70°.又AD=AE=1,∴∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,∴∠AEC=70°+35°=105°.(3)分兩種情況討論:①當(dāng)∠AEC=90°時,易知△CBE≌△CAE≌△CAD,得∠BCE=30°,則在△ABH中,∠B=60°,∠AHB=90°,AB=2,得BH=1,于是BC=2.②當(dāng)∠CAE=90°時,易知△CDA∽△BCA,又,則(舍負(fù))易知∠ACE<90°,所以邊BC的長為.綜上所述:邊BC的長為2或.點睛:本題是四邊形綜合題.考查了梯形中位線,相似三角形的判定與性質(zhì).解題的關(guān)鍵是掌握梯形中常見的輔助線作法.5.已知Rt△ABD中,邊AB=OB=1,∠ABO=90°問題探究:(1)以AB為邊,在Rt△ABO的右邊作正方形ABC,如圖(1),則點O與點D的距離為.(2)以AB為邊,在Rt△ABO的右邊作等邊三角形ABC,如圖(2),求點O與點C的距離.問題解決:(3)若線段DE=1,線段DE的兩個端點D,E分別在射線OA、OB上滑動,以DE為邊向外作等邊三角形DEF,如圖(3),則點O與點F的距離有沒有最大值,如果有,求出最大值,如果沒有,說明理由.【答案】(1)、;(2)、;(3)、.【解析】【分析】試題分析:(1)、如圖1中,連接OD,在Rt△ODC中,根據(jù)OD=計算即可.(2)、如圖2中,作CE⊥OB于E,CF⊥AB于F,連接OC.在Rt△OCE中,根據(jù)OC=計算即可.(3)、如圖3中,當(dāng)OF⊥DE時,OF的值最大,設(shè)OF交DE于H,在OH上取一點M,使得OM=DM,連接DM.分別求出MH、OM、FH即可解決問題.【詳解】試題解析:(1)、如圖1中,連接OD,∵四邊形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD=(2)、如圖2中,作CE⊥OB于E,CF⊥AB于F,連接OC.∵∠FBE=∠E=∠CFB=90°,∴四邊形BECF是矩形,∴BF=CF=,CF=BE=,在Rt△OCE中,OC==.(3)、如圖3中,當(dāng)OF⊥DE時,OF的值最大,設(shè)OF交DE于H,在OH上取一點M,使得OM=DM,連接DM.∵FD=FE=DE=1,OF⊥DE,∴DH=HE,OD=OE,∠DOH=∠DOE=22.5°,∵OM=DM,∴∠MOD=∠MDO=22.5°,∴∠DMH=∠MDH=45°,∴DH=HM=,∴DM=OM=,∵FH=,∴OF=OM+MH+FH==.∴OF的最大值為.考點:四邊形綜合題.6.如圖所示,矩形ABCD中,點E在CB的延長線上,使CE=AC,連接AE,點F是AE的中點,連接BF、DF,求證:BF⊥DF.【答案】見解析.【解析】【分析】延長BF,交DA的延長線于點M,連接BD,進而求證△AFM≌△EFB,得AM=BE,F(xiàn)B=FM,即可求得BC+BE=AD+AM,進而求得BD=BM,根據(jù)等腰三角形三線合一的性質(zhì)即可求證BF⊥DF.【詳解】延長BF,交DA的延長線于點M,連接BD.∵四邊形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,F(xiàn)B=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE=BD=DM.∵FB=FM,∴BF⊥DF.【點睛】本題考查了矩形的性質(zhì),全等三角形的判定和對應(yīng)邊相等的性質(zhì),等腰三角形三線合一的性質(zhì),本題中求證DB=DM是解題的關(guān)鍵.7.已知,點是的角平分線上的任意一點,現(xiàn)有一個直角繞點旋轉(zhuǎn),兩直角邊,分別與直線,相交于點,點.(1)如圖1,若,猜想線段,,之間的數(shù)量關(guān)系,并說明理由.(2)如圖2,若點在射線上,且與不垂直,則(1)中的數(shù)量關(guān)系是否仍成立?如成立,請說明理由;如不成立,請寫出線段,,之間的數(shù)量關(guān)系,并加以證明.(3)如圖3,若點在射線的反向延長線上,且,,請直接寫出線段的長度.【答案】(1)詳見解析;(2)詳見解析;(3)【解析】【分析】(1)先證四邊形為矩形,再證矩形為正方形,由正方形性質(zhì)可得;(2)過點作于點,于點,證四邊形為正方形,再證,可得;(3)根據(jù),可得.【詳解】解:(1)∵,,,∴四邊形為矩形.∵是的角平分線,∴,∴,∴矩形為正方形,∴,.∴.(2)如圖,過點作于點,于點,∵平分,,∴四邊形為正方形,由(1)得:,在和中,,∴,∴,∴.(3),,∴.∵,,∴,∴,∴,的長度為.【點睛】考核知識點:矩形,正方形的判定和性質(zhì).熟練運用特殊四邊形的性質(zhì)和判定是關(guān)鍵.8.在中,于點,點為邊的中點,過點作,交的延長線于點,連接.如圖,求證:四邊形是矩形;如圖,當(dāng)時,取的中點,連接、,在不添加任何輔助線和字母的條件下,請直接寫出圖中所有的平行四邊形(不包括矩形).【答案】(1)證明見解析;(2)四邊形、四邊形、四邊形、四邊形、四邊形都是平行四邊形.【解析】【分析】(1)由△AEF≌△CED,推出EF=DE,又AE=EC,推出四邊形ADCF是平行四邊形,只要證明∠ADC=90°,即可推出四邊形ADCF是矩形.(2)四邊形ABDF、四邊形AGEF、四邊形GBDE、四邊形AGDE、四邊形GDCE都是平行四邊形.【詳解】證明:∵,∴,∵是中點,∴,在和中,,∴,∴,∵,∴四邊形是平行四邊形,∵,∴,∴四邊形是矩形.∵線段、線段、線段都是的中位線,又,∴,,,∴四邊形、四邊形、四邊形、四邊形、四邊形都是平行四邊形.【點睛】考查平行四邊形的判定、矩形的判定、三角形的中位線定理、全等三角形的判定和性質(zhì)等知識,正確尋找全等三角形解決問題是解題的關(guān)鍵.9.如圖1,在正方形ABCD中,AD=6,點P是對角線BD上任意一點,連接PA,PC過點P作PE⊥PC交直線AB于E.(1)求證:PC=PE;(2)延長AP交直線CD于點F.①如圖2,若點F是CD的中點,求△APE的面積;②若ΔAPE的面積是,則DF的長為(3)如圖3,點E在邊AB上,連接EC交BD于點M,作點E關(guān)于BD的對稱點Q,連接PQ,MQ,過點P作PN∥CD交EC于點N,連接QN,若PQ=5,MN=,則△MNQ的面積是【答案】(1)略;(2)①8,②4或9;(3)【解析】【分析】(1)利用正方形每個角都是90°,對角線平分對角的性質(zhì),三角形外角等于和它不相鄰的兩個內(nèi)角的和,等角對等邊等性質(zhì)容易得證;(2)作出△ADP和△DFP的高,由面積法容易求出這個高的值.從而得到△PAE的底和高,并求出面積.第2小問思路一樣,通過面積法列出方程求解即可;(3)根據(jù)已經(jīng)條件證出△MNQ是直角三角形,計算直角邊乘積的一半可得其面積.【詳解】(1)證明:∵點P在對角線BD上,∴△ADP≌△CDP,∴AP=CP,∠DAP=∠DCP,∵PE⊥PC,∴∠EPC=∠EPB+∠BPC=90°,∵∠PEA=∠EBP+∠EPB=45°+90°-∠BPC=135°-∠BPC,∵∠PAE=90°-∠DAP=90°-∠DCP,∠DCP=∠BPC-∠PDC=∠BPC-45°,∴∠PAE=90°-(∠BPC-45°)=135°-∠BPC,∴∠PEA=∠PAE,∴PC=PE;(2)①如圖2,過點P分別作PH⊥AD,PG⊥CD,垂足分別為H、G.延長GP交AB于點M.∵四邊形ABCD是正方形,P在對角線上,∴四邊形HPGD是正方形,∴PH=PG,PM⊥AB,設(shè)PH=PG=a,∵F是CD中點,AD=6,則FD=3,=9,∵==,∴,解得a=2,∴AM=HP=2,MP=MG-PG=6-2=4,又∵PA=PE,∴AM=EM,AE=4,∵=,②設(shè)HP=b,由①可得AE=2b,MP=6-b,∴=,解得b=2.4,∵==,∴,∴當(dāng)b=2.4時,DF=4;當(dāng)b=3.6時,DF=9,即DF的長為4或9;(3)如圖,∵E、Q關(guān)于BP對稱,PN∥CD,∴∠1=∠2,∠2+∠3=∠BDC=45°,∴∠1+∠4=45°,∴∠3=∠4,易證△PEM≌△PQM,△PNQ≌△PNC,∴∠5=∠6,∠7=∠8,EM=QM,NQ=NC,∴∠6+∠7=90°,∴△MNQ是直角三角形,設(shè)EM=a,NC=b列方程組,可得ab=,∴,【點睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等腰直角三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)等知識;本題綜合性強,有一定難度,熟練掌握正方形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.要注意運用數(shù)形結(jié)合思想.10.如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.(1)請判斷:FG與CE的關(guān)系是___;(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.【答案】(1)FG=CE,F(xiàn)G∥CE;(2)成立;(3)成立.【解析】試題分析:(1)只要證明四邊形CDGF是平行四邊形即可得出FG=CE,F(xiàn)G∥CE;(2)構(gòu)造輔助線后證明△HGE≌△CED,利用對應(yīng)邊相等求證四邊形GHBF是矩形后,利用等量代換即可求出FG=C,F(xiàn)G∥CE;(3)證明△CBF≌△DCE后,即可證明四邊形CEGF是平行四邊形.試題解析:解:(1)FG=CE,F(xiàn)G∥CE;(2)過點G作GH⊥CB的延長線于點H.∵EG⊥DE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HE.在△HGE與△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四邊形GHBF是矩形,∴GF=BH,F(xiàn)G∥CH,∴FG∥CE.∵四邊形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;(3)∵四邊形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.在△CBF與△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四邊形CEGF平行四邊形,∴FG∥CE,F(xiàn)G=CE.11.在矩形紙片ABCD中,AB=6,BC=8,現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,連接DF.(1)說明△BEF是等腰三角形;(2)求折痕EF的長.【答案】(1)見解析;(2).【解析】【分析】(1)根據(jù)折疊得出∠DEF=∠BEF,根據(jù)矩形的性質(zhì)得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,根據(jù)矩形的性質(zhì)得出EM=AB=6,AE=BM,根據(jù)折疊得出DE=BE,根據(jù)勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【詳解】(1)∵現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,∴∠DEF=∠BEF.∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,所以EM=AB=6,AE=BM.∵現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,∴DE=BE,DO=BO,BD⊥EF.∵四邊形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案為:.【點睛】本題考查了折疊的性質(zhì)和矩形性質(zhì)、勾股定理等知識點,能熟記折疊的性質(zhì)是解答此題的關(guān)鍵.12.如圖,P是邊長為1的正方形ABCD對角線BD上一動點(P與B、D不重合),∠APE=90°,且點E在BC邊上,AE交BD于點F.(1)求證:①△PAB≌△PCB;②PE=PC;(2)在點P的運動過程中,的值是否改變?若不變,求出它的值;若改變,請說明理由;(3)設(shè)DP=x,當(dāng)x為何值時,AE∥PC,并判斷此時四邊形PAFC的形狀.【答案】(1)見解析;(2);(3)x=﹣1;四邊形PAFC是菱形.【解析】試題分析:(1)根據(jù)四邊形ABCD是正方形,得出AB=BC,∠ABP=∠CBP°,再根據(jù)PB=PB,即可證出△PAB≌△PCB,②根據(jù)∠PAB+∠PEB=180°,∠PEC+∠PEB=180°,得出∠PEC=∠PCB,從而證出PE=PC;(2)根據(jù)PA=PC,PE=PC,得出PA=PE,再根據(jù)∠APE=90°,得出∠PAE=∠PEA=45°,即可求出;(3)先求出∠CPE=∠PEA=45°,從而得出∠PCE,再求出∠BPC即可得出∠BPC=∠PCE,從而證出BP=BC=1,x=﹣1,再根據(jù)AE∥PC,得出∠AFP=∠BPC=67.5°,由△PAB≌△PCB得出∠BPA=∠BPC=67.5°,PA=PC,從而證出AF=AP=PC,得出答案.試題解析:(1)①∵四邊形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=∠ABC=45°.∵PB=PB,∴△PAB≌△PCB(SAS).②由△PAB≌△PCB可知,∠PAB=∠PCB.∵∠ABE=∠APE=90°,∴∠PAB+∠PEB=180°,又∵∠PEC+∠PEB=180°,∴∠PEC=∠PAB=∠PCB,∴PE=PC.(2)在點P的運動過程中,的值不改變.由△PAB≌△PCB可知,PA=PC.∵PE=PC,∴PA=PE,又∵∠APE=90°,∴△PAE是等腰直角三角形,∠PAE=∠PEA=45°,∴=.(3)∵AE∥PC,∴∠CPE=∠PEA=45°,∴在△PEC中,∠PCE=∠PEC=(180°﹣45°)=67.5°.在△PBC中,∠BPC=(180°﹣∠CBP﹣∠PCE)=(180°﹣45°﹣67.5°)=67.5°.∴∠BPC=∠PCE=67.5°,∴BP=BC=1,∴x=BD﹣BP=﹣1.∵AE∥PC,∴∠AFP=∠BPC=67.5°,由△PAB≌△PCB可知,∠BPA=∠BPC=67.5°,PA=PC,∴∠AFP=∠BPA,∴AF=AP=PC,∴四邊形PAFC是菱形.考點:四邊形綜合題.13.正方形ABCD的邊長為1,對角線AC與BD相交于點O,點E是AB邊上的一個動點(點E不與點A、B重合),CE與BD相交于點F,設(shè)線段BE的長度為x.(1)如圖1,當(dāng)AD=2OF時,求出x的值;(2)如圖2,把線段CE繞點E順時針旋轉(zhuǎn)90°,使點C落在點P處,連接AP,設(shè)△APE的面積為S,試求S與x的函數(shù)關(guān)系式并求出S的最大值.【答案】(1)x=﹣1;(2)S=﹣(x﹣)2+(0<x<1),當(dāng)x=時,S的值最大,最大值為,.【解析】試題分析:(1)過O作OM∥AB交CE于點M,如圖1,由平行線等分線段定理得到CM=ME,根據(jù)三角形的中位線定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到結(jié)果;(2)過P作PG⊥AB交AB的延長線于G,如圖2,根據(jù)已知條件得到∠ECB=∠PEG,根據(jù)全等三角形的性質(zhì)得到EB=PG=x,由三角形的面積公式得到S=(1﹣x)?x,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.試題解析:(1)過O作OM∥AB交CE于點M,如圖1,∵OA=OC,∴CM=ME,∴AE=2OM=2OF,∴OM=OF,∴,∴BF=BE=x,∴OF=OM=,∵AB=1,∴OB=,∴,∴x=﹣1;(2)過P作PG⊥AB交AB的延長線于G,如圖2,∵∠CEP=∠EBC=90°,∴∠ECB=∠PEG,∵PE=EC,∠EGP=∠CBE=90°,在△EPG與△CEB中,,∴△EPG≌△CEB,∴EB=PG=x,∴AE=1﹣x,∴S=(1﹣x)?x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,∴當(dāng)x=時,S的值最大,最大值為,.考點:四邊形綜合題14.如圖1,在菱形ABCD中,ABC=60°,若點E在AB的延長線上,EF∥AD,EF=BE,點P是DE的中點,連接FP并延長交AD于點G.(1)過D作DHAB,垂足為H,若DH=,BE=AB,求DG的長;(2)連接CP,求證:CPFP;(3)如圖2,在菱形ABCD中,ABC=60°,若點E在CB的延長線上運動,點F在AB的延長線上運動,且BE=BF,連接DE,點P為DE的中點,連接FP、CP,那么第(2)問的結(jié)論成立嗎?若成立,求出的值;若不成立,請說明理由.【答案】(1)1;(2)見解析;(3).【解析】試題分析:(1)根據(jù)菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60°,則∠DAH=∠ABC=60°,根據(jù)DH⊥AB得出∠DHA=90°,根據(jù)Rt△ADH的正弦值得出AD的長度,然后得出BE的長度,然后證明△PDG≌△PEF,得出DG=EF,根據(jù)EF∥AD,AD∥BC得出EF∥BC,則說明△BEF為正三角形,從而得出DG的長度;(2)連接CG、CF,根據(jù)△PDG≌△PEF得出PG=PF,然后證明△CDG≌△CBF,從而得到CG=CF,根據(jù)PG=PF得出垂直;(3)過D作EF的平行線,交FP延長于點G,連接CG、CF證△PEF≌△PDG,然后證明△CDG≌△CBF,從而得出∠GCE=120°,根據(jù)Rt△CPF求出比值.試題解析:(1)解:∵四邊形ABCD為菱形∴DA∥BCCD="CB"∠CDG=∠CBA=60°∴∠DAH=∠ABC=60°∵DH⊥AB∴∠DHA=90°在Rt△ADH中sin∠DAH=∴AD=∴BE=AB=×4=1∵EF∥AD∴∠PDG=∠PEB∵P為DE的中點∴PD=PE∵∠DPG=∠EPF∴△PDG≌△PEF∴DG=EF∵EF∥ADAD∥BC∴EF∥

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論