版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆太原師院附中數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面上兩點,則下列向量是直線的方向向量是()A. B.C. D.2.下列直線中,傾斜角最大的為()A. B.C. D.3.已知向量,且,則的值為()A.4 B.2C.3 D.14.命題“?x0∈(0,+∞),”的否定是()A.?x∈(﹣∞,0),2x+sinx≥0B.?x∈(0,+∞),2x+sinx≥0C.?x0∈(0,+∞),D.?x0∈(﹣∞,0),5.已知集合,,則A. B.C. D.6.2021年11月,鄭州二七罷工紀念塔入選全國職工愛國主義教育基地名單.某數(shù)學建模小組為測量塔的高度,獲得了以下數(shù)據(jù):甲同學在二七廣場A地測得紀念塔頂D的仰角為45°,乙同學在二七廣場B地測得紀念塔頂D的仰角為30°,塔底為C,(A,B,C在同一水平面上,平面ABC),測得,,則紀念塔的高CD為()A.40m B.63mC.m D.m7.在長方體中,()A. B.C. D.8.如果向量,,共面,則實數(shù)的值是()A. B.C. D.9.我國古代數(shù)學著作《九章算術(shù)》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤,斬末一尺,重二斤”意思是:“現(xiàn)有一根金杖,長5尺,頭部1尺,重4斤;尾部1尺,重2斤;若該金杖從頭到尾每一尺重量構(gòu)成等差數(shù)列,其中重量為,則的值為()A.4 B.12C.15 D.1810.若,則與的大小關(guān)系是()A. B.C. D.不能確定11.已知四面體中,,若該四面體的外接球的球心為,則的面積為()A. B.C. D.12.如圖,已知最底層正方體的棱長為a,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點,依此方法一直繼續(xù)下去,則所有這些正方體的體積之和將趨近于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為拋物線上的動點,,,則的最小值為________.14.已知函數(shù),則曲線在點處的切線方程為___________.15.已知水平放置的是按“斜二測畫法”得到如下圖所示的直觀圖,其中,,則原的面積為______.16.已知直線與圓交于A,B兩點,過A,B分別做l的垂線與x軸交于C,D兩點,若|AB|=4,則|CD|=_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角坐標系xOy中,已知拋物線C:y2=4x經(jīng)過點A(1,2),直線l:y=kx+b與拋物線C交于M,N兩點.(1)若,求直線l的方程;(2)當AM⊥AN時,若對任意滿足條件的實數(shù)k,都有b=mk+n(m,n為常數(shù)),求m+2n的值.18.(12分)已知公差不為0的等差數(shù)列的前項和為,且,,成等比數(shù)列,且.(1)求的通項公式;(2)若,求數(shù)列的前n項和.19.(12分)在下面兩個條件中任選一個條件,補充在后面問題中的橫線上,并完成解答.條件①:展開式前三項的二項式系數(shù)的和等于37;條件②:第3項與第7項的二項式系數(shù)相等;問題:在二項式的展開式中,已知__________.(1)求展開式中二項式系數(shù)最大的項;(2)設,求的值;(3)求的展開式中的系數(shù).20.(12分)已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,且.(1)求C;(2)若D是BC的中點,,,求AB的長.21.(12分)已知三點共線,其中是數(shù)列中的第n項.(1)求數(shù)列的通項;(2)設,求數(shù)列的前n項和.22.(10分)一個長方體的平面展開圖及該長方體的直觀圖的示意圖如圖所示(1)請將字母F,G,H標記在長方體相應的頂點處(不需說明理由):(2)若且有下面兩個條件:①;②,請選擇其中一個條件,使得DF⊥平面,并證明你的結(jié)論
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由空間向量的坐標運算和空間向量平行的坐標表示,以及直線的方向向量的定義可得選項.【詳解】解:因為兩點,則,又因為與向量平行,所以直線的方向向量是,故選:D.2、D【解析】首先分別求直線的斜率,再結(jié)合直線傾斜角與斜率的關(guān)系,即可判斷選項.【詳解】A.直線的斜率;B.直線的斜率;C.直線的斜率;D.直線的斜率,因為,結(jié)合直線的斜率與傾斜角的關(guān)系,可知直線的傾斜角最大.故選:D3、A【解析】由題意可得,利用空間向量數(shù)量積的坐標表示列方程,解方程即可求解.【詳解】因為,所以,因為向量,,所以,解得,所以的值為,故選:A.4、B【解析】利用特稱命題的否定是全稱命題,寫出結(jié)果即可【詳解】命題“?x0∈(0,+∞),”的否定是“?x∈(0,+∞),2x+sinx≥0”故選:B5、B【解析】由交集定義直接求解即可.【詳解】集合,,則.故選B.【點睛】本題主要考查了集合的交集運算,屬于基礎題.6、B【解析】設,先表示出,再利用余弦定理即可求解.【詳解】如圖所示,,設塔高為,因為平面ABC,所以,所以,又,即,解得.故選:B.7、D【解析】根據(jù)向量的運算法則得到,帶入化簡得到答案.【詳解】在長方體中,易知,所以.故選:D.8、B【解析】設,由空間向量的坐標運算可得出方程組,即可解得的值.【詳解】由于向量,,共面,設,可得,解得.故選:B.9、C【解析】先求出公差,再利用公式可求總重量.【詳解】設頭部一尺重量為,其后每尺重量依次為,由題設有,,故公差為.故中間一尺的重量為所以這5項和為.故選:C.10、B【解析】由題知,進而研究的符號即可得答案.詳解】解:,所以,即.故選:B11、C【解析】根據(jù)四面體的性質(zhì),結(jié)合線面垂直的判定定理、球的性質(zhì)、正弦定理進行求解即可.【詳解】由圖設點為中點,連接,由,所以,面,則面,且,所以球心面,所以平面與球面的截面為大圓,延長線與此大圓交于點.在三角形中,由,所以,由正弦定理知:三角形的外接圓半徑為,設三角形的外接圓圓心為點,則面,有,則,設的外接圓圓心為點,則面,由正弦定理知:三角形PAB的外接圓半徑為,所以,又三角形中,,所以為的角平分線,則,在直角三角形OMD中,,在直角三角形OED中,,在三角形中,取中點,由,所以,故選:C.【點睛】關(guān)鍵點睛:運用正弦定理、勾股定理、線面垂直的判定定理是解題的關(guān)鍵.12、D【解析】由已知可判斷出所有這些正方體的體積構(gòu)成首項為,公比為的等比數(shù)列,然后求和可得答案.【詳解】最底層上面第一個正方體的棱長為,其體積為,上面第二個正方體的棱長為,其體積為,上面第三個正方體的棱長為,其體積為,所有這些正方體的體積構(gòu)成首項為,公比為的等比數(shù)列,其前項和為,當,,所以所有這些正方體的體積之和將趨近于.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】根據(jù)拋物線的定義把的長轉(zhuǎn)化為到準線的距離為,進而數(shù)形結(jié)合求出最小值.【詳解】易知為拋物線的焦點,設到準線的距離為,則,而的最小值為到準線的距離,故的最小值為.故答案為:614、【解析】對函數(shù)求導,由導數(shù)的幾何意義可得切線的斜率,求得切點,由直線的點斜式方程可得所求切線的方程【詳解】函數(shù)的導數(shù)為∴,.曲線在點處的切線方程為,即.故答案為:.15、【解析】根據(jù)直觀圖畫出原圖,再根據(jù)三角形面積公式計算可得.【詳解】解:依題意得到直觀圖的原圖如下:且,所以故答案為:【點睛】本題考查斜二測畫法中原圖和直觀圖面積之間的關(guān)系,屬于基礎題16、【解析】先求出圓心和半徑,由于半徑為2,弦|AB|=4,所以可知直線過圓心,從而得,求出,得到直線方程且傾斜角為135°,進而可求出|CD|【詳解】圓,圓心(1,2),半徑r=2,∵|AB|=4,∴直線過圓心(1,2),∴,∴,∴直線,傾斜角為135°,∵過A,B分別做l的垂線與x軸交于C,D兩點,∴.故答案為:4【點睛】此題考查直線與圓的位置關(guān)系,考查兩直線的位置關(guān)系,考查轉(zhuǎn)化思想和計算能力,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)3或【解析】(1)由可得,則可得直線為,設,然后將直線方程代入拋物線方程中消去,再利用根與系數(shù)的關(guān)系,由可得,三個式子結(jié)合可求出,從而可得直線方程,(2)將直線方程代入拋物線方程中消去,再利用根與系數(shù)的關(guān)系表示出,再結(jié)合直線方程表示出,由AM⊥AN可得,化簡結(jié)合前面的式子可求出或,從而可可求出的值,進而可求得答案【小問1詳解】因為A(1,2),,所以,則直線為,設,由,得,由,得則,因為,所以,所以,所以,所以,解得,所以直線的方程為,即,【小問2詳解】設,由,得,由,得,則,所以,,因為AM⊥AN,所以,所以,即,所以,所以,所以或,所以或,所以或18、(1)(2)【解析】(1)根據(jù)等差數(shù)列的通項公式和等比中項,可得,再根據(jù)等差數(shù)列的前項和公式,即可求出,,進而求出結(jié)果;(2)由(1)得,結(jié)合等比數(shù)列前項和公式和對數(shù)運算性質(zhì),利用分組求和,即可求出結(jié)果.【小問1詳解】解:設的公差為,由,,成等比數(shù)列可知,即,化簡得.由可得,所以.將代入,得,,所以.小問2詳解】解:由(1)得,所以.19、(1)答案見解析(2)0(3)560【解析】(1)選擇①,由,得,選擇②,由,得;(2)利用賦值法可求解;(3)分兩個部分求解后再求和即可.【小問1詳解】選擇①,因為,解得,所以展開式中二項式系數(shù)最大的項為選擇②,因為,解得,所以展開式中二項式系數(shù)最大的項為【小問2詳解】令,則,令,則,所以,【小問3詳解】因為所以的展開式中含的項為:所以展開式中的系數(shù)為560.20、(1)(2)【解析】(1)根據(jù)正弦定理化邊為角,結(jié)合三角變換可求答案;(2)根據(jù)余弦定理先求,再用余弦定理求解.【小問1詳解】∵,∴由正弦定理可得,∴,∴.∵,∴,即.∵,∴.【小問2詳解】設,則,即,解得或(舍去),∴.∵,∴.21、(1)(2)【解析】(1)由三點共線可知斜率相等,即可得出答案;(2)由題可得,利用錯位相減法即可求出答案.【小問1詳解】三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度水上運輸合同標的船舶檢驗與維護協(xié)議4篇
- 二零二五版市政排水管網(wǎng)改造升級施工勞務分包合同4篇
- 擔保合同信息協(xié)議書(2篇)
- 二零二五版嬰幼兒奶粉線上線下同步促銷活動合同4篇
- 沿街旺鋪租賃合同(2025版)6篇
- 2025年度門衛(wèi)勞務與社區(qū)治理合作合同4篇
- 2025年度智能交通明企金哨軟件解決方案合同4篇
- 2025年度牛肉產(chǎn)品國際認證與標準制定合同4篇
- 2025年度個人醫(yī)療設施建設與改造承包合同模板2篇
- 二零二五年度農(nóng)業(yè)綜合生產(chǎn)能力提升機耕作業(yè)承包合同3篇
- 物業(yè)民法典知識培訓課件
- 2023年初中畢業(yè)生信息技術(shù)中考知識點詳解
- 2024-2025學年八年級數(shù)學人教版上冊寒假作業(yè)(綜合復習能力提升篇)(含答案)
- 《萬方數(shù)據(jù)資源介紹》課件
- 醫(yī)生定期考核簡易程序述職報告范文(10篇)
- 第一章-地震工程學概論
- 《中國糖尿病防治指南(2024版)》更新要點解讀
- 初級創(chuàng)傷救治課件
- 交通運輸類專業(yè)生涯發(fā)展展示
- 2024年山東省公務員錄用考試《行測》試題及答案解析
- 神經(jīng)重癥氣管切開患者氣道功能康復與管理專家共識(2024)解讀
評論
0/150
提交評論