版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省惠民縣第二中學2025屆高一數(shù)學第一學期期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在空間直角坐標系中,已知球的球心為,且點在球的球面上,則球的半徑為()A.4 B.5C.16 D.252.已知函數(shù),在下列區(qū)間中,包含零點的區(qū)間是A. B.C. D.3.設集合U={1,2,3,4},M={1,2,3},N={2,3,4},則?A.{1,2}C.{2,4}4.對任意正實數(shù),不等式恒成立,則實數(shù)的取值范圍是()A. B.C. D.5.冪函數(shù),當時為減函數(shù),則實數(shù)的值為A.或2 B.C. D.6.命題“,是4的倍數(shù)”的否定為()A.,是4的倍數(shù) B.,不是4的倍數(shù)C.,不是4的倍數(shù) D.,不是4的倍數(shù)7.若則一定有A. B.C. D.8.已知,,是三個不同的平面,是一條直線,則下列說法正確的是()A.若,,,則B.若,,則C.若,,則D.若,,,則9.下列函數(shù)中,既是偶函數(shù),又是(0,+∞)上的減函數(shù)的是()A. B.C. D.10.已知角α的終邊經(jīng)過點,則等于()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.圓柱的高為1,它的兩個底面在直徑為2的同一球面上,則該圓柱的體積為____________;12.漏斗作為中國傳統(tǒng)器具而存在于日常生活之中,某漏斗有蓋的三視圖如圖所示,其中俯視圖為正方形,則該漏斗的容積為不考慮漏斗的厚度______,若該漏斗存在外接球,則______.13.如圖,扇形的周長是6,該扇形的圓心角是1弧度,則該扇形的面積為______.14.若函數(shù)(,且)的圖象經(jīng)過點,則___________.15.新冠疫情防控常態(tài)化,核酸檢測應檢盡檢!核酸檢測分析是用熒光定量PCR法,通過化學物質(zhì)的熒光信號,對在PCR擴增進程中成指數(shù)級增加的靶標DNA實時檢測,在PCR擴增的指數(shù)時期,熒光信號強度達到閾值時,DNA的數(shù)量與擴增次數(shù)n滿足:,其中p為擴增效率,為DNA的初始數(shù)量.已知某被測標本DNA擴增8次后,數(shù)量變?yōu)樵瓉淼?00倍,那么該標本的擴增效率p約為___________;該被測標本DNA擴增13次后,數(shù)量變?yōu)樵瓉淼腳__________倍.(參考數(shù)據(jù):,,,,)16.已知弧長為cm2的弧所對的圓心角為,則這條弧所在的扇形面積為_____cm2三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.為了抗擊新型冠狀病毒肺炎,某醫(yī)藥公司研究出一種消毒劑,據(jù)實驗表明,該藥物釋放量(單位:)與時間(單位:)函數(shù)關(guān)系為,當消毒后,測量得藥物釋放量等于;而實驗表明,當藥物釋放量小于對人體無害(1)求的值;(2)若使用該消毒劑對房間進行消毒,求對人體有害的時間有多長?18.對于四個正數(shù),如果,那么稱是的“下位序?qū)Α保?)對于,試求的“下位序?qū)Α?;?)設均為正數(shù),且是的“下位序?qū)Α?,試判斷之間的大小關(guān)系.19.已知集合A為函數(shù)的定義域,集合B是不等式的解集(1)時,求;(2)若,求實數(shù)a的取值范圍20.已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)求函數(shù)在區(qū)間上的最大值和最小值.21.直線l經(jīng)過兩點(2,1)、(6,3).(1)求直線l的方程;(2)圓C的圓心在直線l上,并且與x軸相切于(2,0)點,求圓C的方程
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)空間中兩點間距離公式,即可求得球的半徑.【詳解】球的球心為,且點在球的球面上,所以設球的半徑為則.故選:B【點睛】本題考查了空間中兩點間距離公式的簡單應用,屬于基礎題.2、C【解析】因為,,所以由根的存在性定理可知:選C.考點:本小題主要考查函數(shù)的零點知識,正確理解零點定義及根的存在性定理是解答好本類題目的關(guān)鍵.3、D【解析】∵M∩N={2,3},∴4、C【解析】先根據(jù)不等式恒成立等價于,再根據(jù)基本不等式求出,即可求解.【詳解】解:,即,即又當且僅當“”,即“”時等號成立,即,故.故選:C.5、C【解析】∵為冪函數(shù),∴,即.解得:或.當時,,在上為減函數(shù);當時,,在上為常數(shù)函數(shù)(舍去),∴使冪函數(shù)為上的減函數(shù)的實數(shù)的值.故選C.考點:冪函數(shù)的性質(zhì).6、B【解析】根據(jù)特稱量詞命題的否定是全稱量詞命題即可求解【詳解】因為特稱量詞命題的否定是全稱量詞命題,所以命題“,是4的倍數(shù)”的否定為“,不是4的倍數(shù)”故選:B7、D【解析】本題主要考查不等關(guān)系.已知,所以,所以,故.故選8、A【解析】利用面面垂直的性質(zhì),線面的位置關(guān)系,面面的位置關(guān)系,結(jié)合幾何模型即可判斷.【詳解】對于A,在平面內(nèi)取一點P,在平面內(nèi)過P分別作平面與,與的交線的垂線a,b,則由面面垂直的性質(zhì)定理可得,又,∴,由線面垂直的判定定理可得,故A正確;對于B,若,,則與位置關(guān)系不確定,可能與平行、相交或在內(nèi),故B錯誤;對于C,若,,則與相交或平行,故C錯誤;對于D,如圖平面,且,,,顯然與不垂直,故D錯誤.故選:A.9、D【解析】根據(jù)題意,依次分析選項中函數(shù)的奇偶性與單調(diào)性,綜合即可得答案.【詳解】解:根據(jù)題意,依次分析選項:對于,是奇函數(shù),不符合題意;對于,,是指數(shù)函數(shù),不是偶函數(shù),不符合題意;對于,,是偶函數(shù),但在上是增函數(shù),不符合題意;對于,,為開口向下的二次函數(shù),既是偶函數(shù),又是上的減函數(shù),符合題意;故選.【點睛】本題考查函數(shù)單調(diào)性與奇偶性的判斷,關(guān)鍵是掌握常見函數(shù)的奇偶性與單調(diào)性,屬于基礎題.10、D【解析】由任意角三角函數(shù)的定義可得結(jié)果.【詳解】依題意得.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題設,易知圓柱體軸截面的對角線長為2,進而求底面直徑,再由圓柱體體積公式求體積即可.【詳解】由題意知:圓柱體軸截面的對角線長為2,而其高為1,∴圓柱底面直徑為.∴該圓柱的體積為.故答案為:12、①.②.0.5【解析】先將三視圖還原幾何體,然后利用長方體和錐體的體積公式求解容積即可;設該漏斗外接球的半徑為,設球心為,利用,列式求解的值即可.【詳解】由題中的三視圖可得,原幾何體如圖所示,其中,,正四棱錐的高為,,,所以該漏斗的容積為;正視圖為該幾何體的軸截面,設該漏斗外接球的半徑為,設球心為,則,因為,又,所以,整理可得,解得,所以該漏斗存在外接球,則故答案為:①;②.13、2【解析】由扇形周長求得半徑同,弧長,再由面積公式得結(jié)論【詳解】設半徑為,則,,所以弧長為,面積為故答案為:214、【解析】把點的坐標代入函數(shù)的解析式,即可求出的值.【詳解】因為函數(shù)的圖象經(jīng)過點,所以,解得.故答案為:.15、①.0.778②.1788【解析】①對數(shù)運算,由某被測標本DNA擴增8次后,數(shù)量變?yōu)樵瓉淼?00倍,可以求出p;②由n=13,可以求數(shù)量是原來的多少倍.【詳解】故答案為:①0.778;②1778.16、【解析】先求出半徑,再用扇形面積公式求解即可.【詳解】由已知半徑為,則這條弧所在的扇形面積為.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)把代入即可求得的值;(2)根據(jù),通過分段討論列出不等式組,從而求解.【詳解】(1)由題意可知,故;(2)因為,所以,又因為時,藥物釋放量對人體有害,所以或,解得或,所以,由,故對人體有害的時間為18、(1)(2)【解析】(1)根據(jù)新定義,代入計算判斷即可;(2)根據(jù)新定義得到ad<bc,再利用不等式的性質(zhì),即可判斷.【詳解】(1),的“下位序?qū)Α笔?(2)是的“下位序?qū)Α?,均為正數(shù),,即,,同理可得,綜上所述,【點睛】關(guān)鍵點點睛:對于本題關(guān)鍵理解,如果,那么稱是的“下位序?qū)Α边@一新定義,理解此定義后,利用不等式性質(zhì)求解即可.19、(1)(2)【解析】(1)由函數(shù)定義域求A,由不等式求B,按照集合交并補運算規(guī)則即可;(2)由A推出B的范圍,由于a的不確定性,可以將不等式轉(zhuǎn)換,用基本不等式解決.【小問1詳解】由,解得:,即;當時,由得:或,∴,∴,∴;【小問2詳解】由知:,即對任意,恒成立,∴,∵,當且僅當,即時取等號,∴,即實數(shù)a的取值范圍為;綜上:,.20、(1),(2),【解析】(1)利用余弦函數(shù)的增減性列不等式可得答案;(2)先討論函數(shù)的增減區(qū)間,再結(jié)合所給角的范圍,可得最值.【小問1詳解】令,,可得,故的單調(diào)遞增區(qū)間為,.【小問2詳解】由(1)知當時,在單調(diào)遞增,可得在單調(diào)遞減,而,從而在單調(diào)遞減,在單調(diào)遞增,故,.21、(1)x-2y=0;(2)(x-2)2+(y-1)2=1【解析】(1)由直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第三章工程經(jīng)濟分析的基本指標及方法可行性研究與項
- 2023-2024學年四川省成都市經(jīng)開區(qū)實驗中學高三聯(lián)合調(diào)研考試數(shù)學試題試卷
- 獲獎課件教學
- 贍養(yǎng)的房產(chǎn)遺囑(3篇)
- 體育課說課稿
- 西餐廳管理制度重要性
- 護士實習心得體會
- 2024屆浙江省溫州市高三最后一次模擬(I卷)數(shù)學試題
- 【課件】大氣壓強-人教版(2024)物理八年級下冊
- 雙手向前投擲實心球 課件
- 胃食管反流病-課件
- 有關(guān)高中生物說課稿范文合集7篇
- 【機場安檢管理存在的問題及控制建議5600字(論文)】
- 寧波大學OJ系統(tǒng)C語言題目及答案精講
- -愛護校園環(huán)境主題班會課件1
- 群眾工作能力
- 石油化工電氣工程施工設計方案
- 鉆孔樁水下混凝土灌注記錄(自動生成)
- 應急疏散指示系統(tǒng)施工方案方案
- 初中英語There-be-句型綜合訓練試題
- 安居寶說明書
評論
0/150
提交評論