內(nèi)蒙古呼倫貝爾市2025屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第1頁
內(nèi)蒙古呼倫貝爾市2025屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第2頁
內(nèi)蒙古呼倫貝爾市2025屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第3頁
內(nèi)蒙古呼倫貝爾市2025屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第4頁
內(nèi)蒙古呼倫貝爾市2025屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

內(nèi)蒙古呼倫貝爾市2025屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一個焦點到它的一條漸近線的距離為,則()A.5 B.25C. D.2.下圖是一個“雙曲狹縫”模型,直桿沿著與它不平行也不相交的軸旋轉(zhuǎn)時形成雙曲面,雙曲面的邊緣為雙曲線.已知該模型左、右兩側(cè)的兩段曲線(曲線AB與曲線CD)所在的雙曲線離心率為2,曲線AB與曲線CD中間最窄處間的距離為10cm,點A與點C,點B與點D均關(guān)于該雙曲線的對稱中心對稱,且|AB|=30cm,則|AD|=()A.10cm B.20cmC.25cm D.30cm3.執(zhí)行下圖所示的程序框圖,則輸出的值為()A.5 B.6C.7 D.84.已知點是橢圓上一點,點,則的最小值為A. B.C. D.5.已知雙曲線左右焦點為,,過的直線與雙曲線的右支交于P,Q兩點,且,若為以Q為頂角的等腰三角形,則雙曲線的離心率為()A. B.C. D.6.礦山爆破時,在爆破點處炸開的礦石的運動軌跡可看作是不同的拋物線,根據(jù)地質(zhì)、炸藥等因素可以算出這些拋物線的范圍,這個范圍的邊界可以看作一條拋物線,叫“安全拋物線”,如圖所示.已知某次礦山爆破時的安全拋物線的焦點為,則這次爆破時,礦石落點的最遠處到點的距離為()A. B.2C. D.7.若橢圓的一個焦點為,則的值為()A.5 B.3C.4 D.28.如圖,、分別為橢圓的左、右焦點,為橢圓上的點,是線段上靠近的三等分點,為正三角形,則橢圓的離心率為()A. B.C. D.9.函數(shù)的定義域為開區(qū)間,導(dǎo)函數(shù)在內(nèi)的圖像如圖所示,則函數(shù)在開區(qū)間內(nèi)的極大值點有()A.1個 B.2個C.3個 D.4個10.已知不等式的解集為,關(guān)于x的不等式的解集為B,且,則實數(shù)a的取值范圍為()A. B.C. D.11.中心在原點的雙曲線C的右焦點為,實軸長為2,則雙曲線C的方程為()A. B.C. D.12.已知三個頂點都在拋物線上,且為拋物線的焦點,若,則()A.6 B.8C.10 D.12二、填空題:本題共4小題,每小題5分,共20分。13.過點且與直線垂直的直線方程為______14.已知關(guān)于的不等式恒成立,則實數(shù)的取值范圍是___________.15.已知拋物線的準線方程為,則________16.若向量,,,且向量,,共面,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C的圓心為,一條直徑的兩個端點分別在x軸和y軸上(1)求圓C的方程;(2)直線l:與圓C相交于M,N兩點,P(異于點M,N)為圓C上一點,求△PMN面積的最大值18.(12分)如圖,在棱長為2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為棱BC,CD的中點(1)求證:D1F平面A1EC1;(2)求直線AC1與平面A1EC1所成角的正弦值.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)當(dāng)時,求函數(shù)在內(nèi)的零點個數(shù).20.(12分)年月日,中國選手楊倩在東京奧運會女子米氣步槍決賽由本得冠軍,為中國代表團攬入本屆奧運會第一枚金牌.受奧運精神的鼓舞,某射擊俱樂部組織名射擊愛好者進行一系列的測試,并記錄他們的射擊得分(單位:分),將所得數(shù)據(jù)整理得到如圖所示的頻率分布直方圖.(1)求頻率分布直方圖中的值,并估計該名射擊愛好者的射擊平均得分(求平均值時同一組數(shù)據(jù)用該組區(qū)間的中點值作代表);(2)若采用分層抽樣的方法,從得分高于分的射擊愛好者中隨機抽取人調(diào)查射擊技能情況,再從這人中隨機選取人進行射擊訓(xùn)練,求這人中至少有人的分數(shù)高于分的概率.21.(12分)已知等差數(shù)列的前項和滿足,.(1)求的通項公式;(2)求數(shù)列的前項和.22.(10分)設(shè)函數(shù)(1)若在處取得極值,求a的值;(2)若在上單調(diào)遞減,求a的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由漸近線方程得到,焦點坐標(biāo)為,漸近線方程為:,利用點到直線距離公式即得解【詳解】由題意,雙曲線故焦點坐標(biāo)為,漸近線方程為:焦點到它的一條漸近線的距離為:解得:故選:B2、B【解析】由離心率求出雙曲線方程,由對稱性設(shè)出點A,B,D坐標(biāo),求出坐標(biāo),求出答案.【詳解】由題意得:,解得:,因為離心率,所以,,故雙曲線方程為,設(shè),則,,則,所以,則,解得:,故.故選:B3、C【解析】直接按照程序框圖運行即可得正確答案.【詳解】當(dāng)時,不成立,時,不成立,時,不成立,時,不成立,時,不成立,時,不成立,時,不成立,時,成立,輸出的值為,故選:C.4、D【解析】設(shè),則,.所以當(dāng)時,的最小值為.故選D.5、C【解析】由雙曲線的定義得出中各線段長(用表示),然后通過余弦定理得出的關(guān)系式,變形后可得離心率【詳解】由題意,又,所以,從而,,,中,,中.,所以,,所以,故選:C6、D【解析】根據(jù)給定條件求出拋物線的頂點,結(jié)合拋物線的性質(zhì)求出p值即可計算作答.【詳解】依題意,拋物線的頂點坐標(biāo)為,則拋物線的頂點到焦點的距離為,p>0,解得,于是得拋物線的方程為,由得,,即拋物線與軸的交點坐標(biāo)為,因此,,所以礦石落點的最遠處到點的距離為.故選:D7、B【解析】由題意判斷橢圓焦點在軸上,則,解方程即可確定的值.【詳解】有題意知:焦點在軸上,則,從而,解得:.故選:B.8、D【解析】根據(jù)橢圓定義及正三角形的性質(zhì)可得到\,再在中運用余弦定理得到、的關(guān)系,進而求得橢圓的離心率【詳解】由橢圓的定義知,,則,因為正三角形,所以,在中,由余弦定理得,則,,故選:D【點睛】本題考查橢圓的離心率的求解,考查考生的邏輯推理能力及運算求解能力,屬于中等題.9、B【解析】利用極值點的定義求解.【詳解】由導(dǎo)函數(shù)的圖象知:函數(shù)在內(nèi),與x軸有四個交點:第一個點處導(dǎo)數(shù)左正右負,第二個點處導(dǎo)數(shù)左負右正,第三個點處導(dǎo)數(shù)左正右正,第四個點處導(dǎo)數(shù)左正右負,所以函數(shù)在開區(qū)間內(nèi)的極大值點有2個,故選:B10、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數(shù)求解即可.【詳解】由得,,解得,因為,所以所以可得在上恒成立,即在上恒成立,故只需,,當(dāng)時,,故故選:B11、D【解析】根據(jù)條件,求出,的值,結(jié)合雙曲線的方程進行求解即可【詳解】解:設(shè)雙曲線的方程為由已知得:,,再由,,雙曲線的方程為:故選:D12、D【解析】設(shè),,,由向量關(guān)系化為坐標(biāo)關(guān)系,再結(jié)合拋物線的焦半徑公式即可計算【詳解】由得焦點,準線方程為,設(shè),,由得則,化簡得所以故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先設(shè)出與直線垂直的直線方程,再把代入進行求解.【詳解】設(shè)與直線垂直的直線為,將代入得:,解得:,故所求直線方程為.故答案為:14、【解析】參變分離,可得,設(shè),求導(dǎo)分析單調(diào)性,可得,即得解【詳解】因為,所以不等式可化為,設(shè),則,設(shè),由于故在上單調(diào)遞增,且,則當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增,所以,則,即.故答案為:15、【解析】由準線方程的表達式構(gòu)建方程,求得答案.【詳解】因為準線方程為,所以故答案為:4【點睛】本題考查拋物線中準線的方程表示,屬于基礎(chǔ)題.16、##【解析】由向量共面的性質(zhì)列出方程組求解即可.【詳解】因為,,共面,所以存在實數(shù)x,y,使得,得,解得∴故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)設(shè)直徑兩端點分別為,,由中點公式求參數(shù)a、b,進而求半徑,即可得圓C的方程;(2)利用弦心距、半徑、弦長的幾何關(guān)系求,再由圓心到直線l的距離求P到直線l的距離的最大值,即可得△PMN面積的最大值【小問1詳解】設(shè)直徑兩端點分別為,,則,,所以,,則圓C半徑,所以C的方程為【小問2詳解】圓心C到直線l的距離,則,點P到直線l的距離的最大值為,所以,△PMN面積的最大值為18、(1)證明見解析;(2).【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得平面.(2)利用向量法求得直線與平面所成角的正弦值.【詳解】(1)建立如圖所示空間直角坐標(biāo)系.,,設(shè)平面的法向量為,則,故可設(shè).由于,所以平面.(2)直線與平面所成角為,則.19、(1)當(dāng),在單調(diào)遞增;當(dāng),在單調(diào)遞增,在單調(diào)遞減.(2)0.【解析】(1)求得,對參數(shù)分類討論,即可由每種情況下的正負確定函數(shù)的單調(diào)性;(2)根據(jù)題意求得,利用進行放縮,只需證即,再利用導(dǎo)數(shù)通過證明從而得到恒成立,則問題得解.【小問1詳解】以為,其定義域為,又,故當(dāng)時,,在單調(diào)遞增;當(dāng)時,令,可得,且令,解得,令,解得,故在單調(diào)遞增,在單調(diào)遞減.綜上所述:當(dāng),在單調(diào)遞增;當(dāng),在單調(diào)遞增,在單調(diào)遞減.【小問2詳解】因為,故可得,則,;下證恒成立,令,則,故在單調(diào)遞減,又當(dāng)時,,故在恒成立,即;因為,故,令,下證在恒成立,要證恒成立,即證,又,故即證,令,則,令,解得,此時該函數(shù)單調(diào)遞增,令,解得,此時該函數(shù)單調(diào)遞減,又當(dāng)時,,也即;令,則,令,解得,此時該函數(shù)單調(diào)遞減,令,解得,此時該函數(shù)單調(diào)遞增,又當(dāng)時,,也即;又,故恒成立,則在恒成立,又,故當(dāng)時,恒成立,則在上的零點個數(shù)是.【點睛】本題考察利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,以及函數(shù)零點問題的處理;本題第二問處理的關(guān)鍵是通過分離參數(shù)和構(gòu)造函數(shù),證明恒成立,屬綜合困難題.20、(1),平均分為;(2).【解析】(1)利用頻率直方圖中所有矩形面積之和為可求得的值,將每個矩形底邊的中點值乘以對應(yīng)矩形的面積,將所得結(jié)果全部相加可得平均成績;(2)分析可知所抽取的人中,成績在內(nèi)的有人,分別記為、、、,成績在內(nèi)的有人,分別記為、,列舉出所有的基本事件,并確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:根據(jù)頻率分布直方圖得到,解得.這組樣本數(shù)據(jù)平均數(shù)為.【小問2詳解】解:根據(jù)頻率分布直方圖得到,分數(shù)在、內(nèi)的頻率分別為、,所以采用分層抽樣的方法從樣本中抽取的人,成績在內(nèi)的有人,分別記為、、、,成績在內(nèi)的有人,分別記為、,記“人中至少有人的分數(shù)高于分”為事件.則所有的基本事件有、、、、、、、、、、、、、、,共種.事件包含的基本事件有、、、、、、、、,共種,所以.21、(1);(2).【解析】(1)由,,可得求出,從而可得的通項公式;(2)由(1)可得,從而可得,然后利用裂項相消求和法可求得【詳解】解:(1)設(shè)等差數(shù)列的公差為,因為,.所以,化簡得,解得,所以,(2)由(1)可知,所以,所以【點睛】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論