北京西城3中2025屆高一上數(shù)學期末學業(yè)水平測試模擬試題含解析_第1頁
北京西城3中2025屆高一上數(shù)學期末學業(yè)水平測試模擬試題含解析_第2頁
北京西城3中2025屆高一上數(shù)學期末學業(yè)水平測試模擬試題含解析_第3頁
北京西城3中2025屆高一上數(shù)學期末學業(yè)水平測試模擬試題含解析_第4頁
北京西城3中2025屆高一上數(shù)學期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京西城3中2025屆高一上數(shù)學期末學業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),若圖象過點,則的值為()A. B.2C. D.2.設,則等于()A. B.C. D.3.已知冪函數(shù),在上單調遞增.設,,,則,,的大小關系是()A. B.C. D.4.已知定義在上的函數(shù)滿足:①的圖像關于直線對稱;②對任意的,,當時,不等式成立.令,,,則下列不等式成立的是()A. B.C. D.5.土地沙漠化的治理,對中國乃至世界來說都是一個難題,我國創(chuàng)造了治沙成功案例——毛烏素沙漠.某沙漠經過一段時間的治理,已有1000公頃植被,假設每年植被面積以20%的增長率呈指數(shù)增長,按這種規(guī)律發(fā)展下去,則植被面積達到4000公頃至少需要經過的年數(shù)為()(參考數(shù)據(jù):取)A.6 B.7C.8 D.96.已知函數(shù),,若對任意,總存在,使得成立,則實數(shù)取值范圍為A. B.C. D.7.已知函數(shù),若關于x的方程有五個不同實根,則m的值是()A.0或 B.C.0 D.不存在8.各側棱長都相等,底面是正多邊形的棱錐稱為正棱錐,正三棱錐的側棱長為,側面都是直角三角形,且四個頂點都在同一個球面上,則該球的表面積為()A. B.C. D.9.已知底面邊長為1,側棱長為的正四棱柱的各頂點均在同一個球面上,則該球的體積為A. B.C. D.10.如果函數(shù)在區(qū)間上單調遞減,則的取值范圍是()A. B.C. D.以上選項均不對二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)的最大值與最小值之差為,則______12.在用二分法求方程的一個近似解時,現(xiàn)在已經將根鎖定在區(qū)間(1,2)內,則下一步可以斷定該根所在區(qū)間為___________.13.若,則a的取值范圍是___________14.已知函數(shù)是定義在R上的奇函數(shù),且,若對任意的,當時,都有成立,則不等式的解集為_____15.定義在上的奇函數(shù)滿足:對于任意有,若,則的值為__________.16.__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在平面直角坐標系中,角的頂點與原點重合,始邊與軸的非負半軸重合,終邊與單位圓交于點,(1)求的值;(2)將射線繞坐標原點按逆時針方向旋轉后與單位圓交于點,求的值;(3)若點與關于軸對稱,求的值.18.已知,,且(1)求的定義域.(2)判斷的奇偶性,并說明理由.19.已知集合,(1)當m=5時,求A∩B,;(2)若,求實數(shù)m取值范圍20.已知函數(shù)且圖象經過點(1)求實數(shù)的值;(2)若,求實數(shù)的取值范圍.21.某同學用“五點法”畫函數(shù)在某一個周期內的圖象時,列表并填入了部分數(shù)據(jù),如下表:0050(Ⅰ)請將上表數(shù)據(jù)補充完整,填寫在答題卡上相應位置,并直接寫出函數(shù)的解析式;(Ⅱ)將圖象上所有點向左平行移動個單位長度,得到的圖象.若圖象的一個對稱中心為,求的最小值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】分析】將代入求得,進而可得的值.【詳解】因為函數(shù)的圖象過點,所以,則,所以,,故選:B.2、B【解析】由全集,以及與,找出與的補集,求出補集的并集即可【詳解】,,則故選:B3、A【解析】根據(jù)冪函數(shù)的概念以及冪函數(shù)的單調性求出,在根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的單調性得到,根據(jù)冪函數(shù)的單調性得到,再結合偶函數(shù)可得答案.【詳解】根據(jù)冪函數(shù)的定義可得,解得或,當時,,此時滿足在上單調遞增,當時,,此時在上單調遞減,不合題意.所以.因為,,,且,所以,因為在上單調遞增,所以,又因為為偶函數(shù),所以,所以.故選:A【點睛】關鍵點點睛:掌握冪函數(shù)的概念和性質、指數(shù)函數(shù)與對數(shù)函數(shù)的單調性是解題關鍵.4、D【解析】根據(jù)題意,分析可得的圖象關于軸對稱,結合函數(shù)的單調性定義分析可得函數(shù)在,上為增函數(shù);結合函數(shù)的奇偶性可得在區(qū)間,上為減函數(shù),由對數(shù)的運算性質可得,據(jù)此分析可得答案【詳解】解:根據(jù)題意,函數(shù)的圖象關于直線對稱,則的圖象關于軸對稱,即函數(shù)為偶函數(shù),又由對任意的,,,當時,不等式成立,則函數(shù)在,上為增函數(shù),又由為偶函數(shù),則在區(qū)間,上為減函數(shù),,,,因為,則有,故有.故選:D5、C【解析】根據(jù)題意列出不等式,利用對數(shù)換底公式,計算出結果.【詳解】經過年后,植被面積為公頃,由,得.因為,所以,又因為,故植被面積達到4000公頃至少需要經過的年數(shù)為8.故選:C6、B【解析】分別求出在的值域,以及在的值域,令在的最大值不小于在的最大值,得到的關系式,解出即可.【詳解】對于函數(shù),當時,,由,可得,當時,,由,可得,對任意,,對于函數(shù),,,,對于,使得,對任意,總存在,使得成立,,解得,實數(shù)的取值范圍為,故選B【點睛】本題主要考查函數(shù)的最值、全稱量詞與存在量詞的應用.屬于難題.解決這類問題的關鍵是理解題意、正確把問題轉化為最值和解不等式問題,全稱量詞與存在量詞的應用共分四種情況:(1)只需;(2),只需;(3),只需;(4),,.7、C【解析】令,做出的圖像,根據(jù)圖像確定至多存在兩個的值,使得與有五個交點時,的值或取值范圍,進而轉為求方程在的值或取值范圍有解,利用一元二次方程根的分布,即可求解.【詳解】做出圖像如下圖所示:令,方程,為,當時,方程沒有實數(shù)解,當或時,方程有2個實數(shù)解,當,方程有4個實數(shù)解,當時,方程有3個解,要使方程方程有五個實根,則方程有一根為1,另一根為0或大于1,當時,有或,當時,,或,滿足題意,當時,,或,不合題意,所以.故選:C.【點睛】本題考查復合方程的解,換元法是解題的關鍵,數(shù)形結合是解題的依賴,或直接用選項中的值代入驗證,屬于較難題.8、D【解析】因為側棱長為a的正三棱錐P﹣ABC的側面都是直角三角形,且四個頂點都在一個球面上,三棱錐的正方體的一個角,把三棱錐擴展為正方體,它們有相同的外接球,球的直徑就是正方體的對角線,正方體的對角線長為:;所以球的表面積為:4π=3πa2故答案為D.點睛:本題考查了球與幾何體的問題,是高考中的重點問題,一般外接球需要求球心和半徑,首先應確定球心的位置,球心到各頂點距離相等,這樣可先確定幾何體中部分點組成的多邊形的外接圓的圓心,過圓心且垂直于多邊形所在平面的直線上任一點到多邊形的頂點的距離相等,然后同樣的方法找到另一個多邊形的各頂點距離相等的直線,這樣兩條直線的交點,就是其外接球的球心,有時也可利用補體法得到半徑.9、D【解析】根據(jù)正四棱柱的幾何特征得:該球的直徑為正四棱柱的體對角線,故,即得,所以該球的體積,故選D.考點:正四棱柱的幾何特征;球的體積.10、A【解析】先求出二次函數(shù)的對稱軸,由區(qū)間,在對稱軸的左側,列出不等式解出的取值范圍【詳解】解:函數(shù)的對稱軸方程為:,函數(shù)在區(qū)間,上遞減,區(qū)間,在對稱軸的左側,,故選:A【點睛】本題考查二次函數(shù)圖象特征和單調性,以及不等式的解法,屬于基礎題二、填空題:本大題共6小題,每小題5分,共30分。11、或.【解析】根據(jù)冪函數(shù)的性質,結合題意,分類討論,利用單調性列出方程,即可求解.【詳解】由題意,函數(shù),當時,函數(shù)在上為單調遞增函數(shù),可得,解得;當時,顯然不成立;當時,函數(shù)在上為單調遞減函數(shù),可得,解得,綜上可得,或.故答案為:或.12、【解析】根據(jù)二分法,取區(qū)間中點值,而,,所以,故判定根區(qū)間考點:二分法【方法點睛】本題主要考察了二分法,屬于基礎題型,對于零點所在區(qū)間的問題,不管怎么考察,基本都要判斷端點函數(shù)值的正負,如果異號,那零點必在此區(qū)間,如果是幾個零點,還要判定此區(qū)間的單調性,這個題考查的是二分法,所以要算區(qū)間的中點值,和兩個端點值的符號,看是否異號.零點肯定在異號的區(qū)間13、【解析】先通過的大小確定的單調性,再利用單調性解不等式即可【詳解】解:且,,得,又在定義域上單調遞減,,,解得故答案為:【點睛】方法點睛:在解決與對數(shù)函數(shù)相關的解不等式問題時,要優(yōu)先考慮利用對數(shù)函數(shù)的單調性來求解.在利用單調性時,一定要明確底數(shù)a的取值對函數(shù)增減性的影響,及真數(shù)必須為正的限制條件14、;【解析】令,則為偶函數(shù),且,當時,為減函數(shù)所以當時,;當時,;因此當時,;當時,,即不等式的解集為點睛:利用函數(shù)性質解抽象函數(shù)不等式,實質是利用對應函數(shù)單調性,而對應函數(shù)需要構造.15、【解析】由可得,則可化簡,利用可得,由是在上的奇函數(shù)可得,由此【詳解】由題,因為,所以,由,則,則,因為,令,則,所以,因為是在上的奇函數(shù),所以,所以,故答案:0【點睛】本題考查函數(shù)奇偶性、周期性的應用,考查由正切值求正、余弦值16、1【解析】應用誘導公式化簡求值即可.【詳解】原式.故答案為:1.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】(1)由三角函數(shù)的定義得到,再根據(jù)且點在第一象限,即可求出;(2)依題意可得,再由(1),即可得解;(3)首先求出的坐標,連接交軸于點,即可得到,再利用二倍角公式計算可得;【小問1詳解】解:因為角終邊與單位圓交于點,且,由三角函數(shù)定義,得.因為,所以.因為點在第一象限,所以.【小問2詳解】解:因為射線繞坐標原點按逆時針方向旋轉后與單位圓交于點,所以.因為,所以.【小問3詳解】解:因為點與關于軸對稱,所以點的坐標是.連接交軸于點,所以.所以.所以的值是.18、(1);(2)偶函數(shù),理由見解析.【解析】(1)根據(jù)對數(shù)的真數(shù)大于零可求得和的定義域,取交集可得定義域;(2)整理可得,驗證得,得到函數(shù)為偶函數(shù).【詳解】(1)令得:定義域為令得:定義域為的定義域為(2)由題意得:,為定義在上的偶函數(shù)【點睛】本題考查函數(shù)定義域的求解、奇偶性的判斷;求解函數(shù)定義域的關鍵是明確對數(shù)函數(shù)要求真數(shù)必須大于零,且需保證構成函數(shù)的每個部分都有意義.19、(1),(2)【解析】(1)根據(jù)集合的交集、并集運算即得解;(2)轉化為,分,兩種情況討論,列出不等式控制范圍,求解即可【小問1詳解】(1)當時,可得集合,,根據(jù)集合的運算,得,.【小問2詳解】解:由,可得,①當時,可得,解得;②當時,則滿足,解得,綜上實數(shù)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論