版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆廣東省深圳南頭中學數(shù)學高二上期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量為平面的法向量,點在內(nèi),點在外,則點到平面的距離為()A. B.C. D.2.等差數(shù)列的前項和,若,則A.8 B.10C.12 D.143.已知f(x)是定義在R上的函數(shù),且f(2)=2,,則f(x)>x的解集是()A. B.C. D.4.若圓與圓相外切,則的值為()A. B.C.1 D.5.王昌齡是盛唐著名的邊塞詩人,被譽為“七絕圣手”,其《從軍行》傳誦至今“青海長云暗雪山,孤城遙望玉門關(guān).黃沙百戰(zhàn)穿金甲,不破樓蘭終不還”,由此推斷,最后一句“返回家鄉(xiāng)”是“攻破樓蘭”的()A.必要條件 B.充分條件C.充要條件 D.既不充分也不必要6.在等比數(shù)列中,是和的等差中項,則公比的值為()A.-2 B.1C.2或-1 D.-2或17.為了防控新冠病毒肺炎疫情,某市疾控中心檢測人員對外來入市人員進行核酸檢測,人員甲、乙均被檢測.設(shè)命題為“甲核酸檢測結(jié)果為陰性”,命題為“乙核酸檢測結(jié)果為陰性”,則命題“至少有一位人員核酸檢測結(jié)果不是陰性”可表示為()A. B.C. D.8.已知,,,則點C到直線AB的距離為()A.3 B.C. D.9.已知等差數(shù)列的公差,是與的等比中項,則()A. B.C. D.10.總體由編號為的30個個體組成.利用所給的隨機數(shù)表選取6個個體,選取的方法是從隨機數(shù)表第1行的第3列和第4列數(shù)字開始,由左到右一次選取兩個數(shù)字,則選出來的第5個個體的編號為()A.20 B.26C.17 D.0311.設(shè)的內(nèi)角A,B,C的對邊分別為a,b,c,已知,,,則b等于()A. B.2C. D.412.雙曲線的光學性質(zhì)為:如圖①,從雙曲線右焦點發(fā)出的光線經(jīng)雙曲線鏡面反射,反射光線的反向延長線經(jīng)過左焦點.我國首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個光學性質(zhì).某“雙曲線新聞燈”的軸截面是雙曲線的一部分,如圖②,其方程為,為其左、右焦點,若從右焦點發(fā)出的光線經(jīng)雙曲線上的點和點反射后,滿足,,則該雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在長方體ABCD﹣A'B'C'D'中,點P,Q分別是棱BC,CD上的動點,BC=4,CD=3,CC'=2,直線CC'與平面PQC'所成的角為30°,則△PQC'的面積的最小值是__14.命題,恒成立是假命題,則實數(shù)a取值范圍是________________15.的展開式中的系數(shù)為_________16.已知數(shù)列的各項均為正數(shù),記為的前n項和,從下面①②③中選取兩個作為條件,證明另外一個成立①數(shù)列是等差數(shù)列:②數(shù)列是等差數(shù)列;③注:若選擇不同的組合分別解答,則按第一個解答計分三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前n項和(1)證明是等比數(shù)列,并求的通項公式;(2)在和之間插入n個數(shù),使這個數(shù)組成一個公差為的等差數(shù)列,求數(shù)列的前n項和18.(12分)已知雙曲線(1)若,求雙曲線的焦點坐標、頂點坐標和漸近線方程;(2)若雙曲線的離心率為,求實數(shù)的取值范圍19.(12分)若數(shù)列的前n項和滿足,(1)求的通項公式;(2)設(shè),求數(shù)列的前n項和20.(12分)如圖,在梯形中,,四邊形為矩形,且平面,.(1)求證:;(2)點在線段(不含端點)上運動,設(shè)直線與平面所成角為,求的取值范圍.21.(12分)在直角坐標系中,曲線C的參數(shù)方程為,(為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.(1)寫出曲線C的極坐標方程;(2)已知直線與曲線C相交于A,B兩點,求.22.(10分)2022北京冬奧會即將開始,北京某大學鼓勵學生積極參與志愿者的選拔.某學院有6名學生通過了志愿者選拔,其中4名男生,2名女生(1)若從中挑選2名志愿者,求入選者正好是一名男生和一名女生的概率;(2)若從6名志愿者中任選3人負責滑雪項目服務(wù)崗位,那么現(xiàn)將6人分為A、B兩組進行滑雪項目相關(guān)知識及志愿者服務(wù)知識競賽,共賽10局.A、B兩組分數(shù)(單位:分)如下:A:125,141,140,137,122,114,119,139,121,142B:126,115,143,126,143,115,139,139,115,139從統(tǒng)計學角度看,應(yīng)選擇哪個組更合適?理由是什么?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】先求出向量,再利用空間向量中點到平面的距離公式即可求解.【詳解】解:由題知,點在內(nèi),點在外,所以又向量為平面的法向量所以點到平面的距離為:故選:A.2、C【解析】假設(shè)公差為,依題意可得.所以.故選C.考點:等差數(shù)列的性質(zhì).3、D【解析】構(gòu)造,結(jié)合已知有在R上遞增且,原不等式等價于,利用單調(diào)性求解集.【詳解】令,由題設(shè)知:,即在R上遞增,又,所以f(x)>x等價于,即.故選:D4、D【解析】確定出兩圓的圓心和半徑,然后由兩圓的位置關(guān)系建立方程求解即可.【詳解】由可得,所以圓的圓心為,半徑為,由可得,所以圓的圓心為,半徑為,因為兩圓相外切,所以,解得,故選:D5、B【解析】由題意,“不破樓蘭”可以推出“不還”,但是反過來“不還”的原因有多種,按照充分條件、必要條件的定義即可判斷【詳解】由題意,“不破樓蘭終不還”即“不破樓蘭”是“不還”的充分條件,即“不破樓蘭”可以推出“不還”,但是反過來“不還”的原因有多種,比如戰(zhàn)死沙場;即如果已知“還”,一定是已經(jīng)“破樓蘭”,所以“還”是“破樓蘭”的充分條件故選:B6、D【解析】由題可得,即求.【詳解】由題意,得,所以,因為,所以,解得或.故選:D.7、D【解析】表示出和,直接判斷即可.【詳解】命題為“甲核酸檢測結(jié)果為陰性”,則命題為“甲核酸檢測結(jié)果不是陰性”;命題為“乙核酸檢測結(jié)果為陰性”,則命題為“乙核酸檢測結(jié)果不是陰性”.故命題“至少有一位人員核酸檢測結(jié)果不是陰性”可表示為.故選D.8、D【解析】應(yīng)用空間向量的坐標運算求在上投影長及的模長,再應(yīng)用勾股定理求點C到直線AB的距離.【詳解】因為,,所以設(shè)點C到直線AB的距離為d,則故選:D9、C【解析】由等比中項的性質(zhì)及等差數(shù)列通項公式可得即可求.【詳解】由,則,可得.故選:C.10、D【解析】根據(jù)題目要求選取數(shù)字,在30以內(nèi)的正整數(shù)符合要求,不在30以內(nèi)的不合要求,舍去,與已經(jīng)選取過重復(fù)的舍去,找到第5個個體的編號.【詳解】已知選取方法為從第一行的第3列和第4列數(shù)字開始,由左到右一次選取兩個數(shù)字,所以選取出來的數(shù)字分別為12(符合要求),13(符合要求),40(不合要求),33(不合要求),20(符合要求),38(不合要求),26(符合要求),13(與前面重復(fù),不合要求),89(不合要求),51(不合要求),03(符合要求),故選出來的第5個個體的編號為03.故選:D11、A【解析】由正弦定理求解即可.【詳解】因為,所以故選:A12、C【解析】連接,已知條件為,,設(shè),由雙曲線定義表示出,用已知正切值求出,再由雙曲線定義得,這樣可由勾股定理求出(用表示),然后在中,應(yīng)用勾股定理得出的關(guān)系,求得離心率【詳解】易知共線,共線,如圖,設(shè),,則,由得,,又,所以,,所以,所以,由得,因為,故解得,則,在中,,即,所以故選:C二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】設(shè)三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由體積法求得的關(guān)系,由直線CC’與平面C’PQ成的角為30°,得到xy≥8,再由VC﹣C′PQ=VC′﹣CPQ,能求出△PQC'的面積的最小值【詳解】解:設(shè)三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由長方體性質(zhì)知兩兩垂直,所以,,,,,所以,由得,所以,∵直線CC’與平面C’PQ成的角為30°,∴h=2,∴,,∴xy≥8,再由體積可知:VC﹣C′PQ=VC′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面積的最小值是8故答案為:814、【解析】由命題為假命題可得命題為真命題,由此可求a范圍.【詳解】∵命題,恒成立是假命題,∴,,∴,,又函數(shù)在為減函數(shù),∴,∴,∴實數(shù)a的取值范圍是,故答案為:.15、4【解析】將代數(shù)式變形為,寫出展開式的通項,令的指數(shù)為,求得參數(shù)的值,代入通項即可求解.【詳解】由展開式的通項為,令,得展開式中的系數(shù)為.由展開式的通項為,令,得展開式中的系數(shù)為.所以的展開式中的系數(shù)為.故答案為:.16、證明過程見解析【解析】選①②作條件證明③時,可設(shè)出,結(jié)合的關(guān)系求出,利用是等差數(shù)列可證;也可分別設(shè)出公差,寫出各自的通項公式后利用兩者的關(guān)系,對照系數(shù),得到等量關(guān)系,進行證明.選①③作條件證明②時,根據(jù)等差數(shù)列的求和公式表示出,結(jié)合等差數(shù)列定義可證;選②③作條件證明①時,設(shè)出,結(jié)合的關(guān)系求出,根據(jù)可求,然后可證是等差數(shù)列;也可利用前兩項的差求出公差,然后求出通項公式,進而證明出結(jié)論.【詳解】選①②作條件證明③:[方法一]:設(shè),則,當時,;當時,;因為也是等差數(shù)列,所以,解得;所以,,故.[方法二]:設(shè)等差數(shù)列的公差為d,等差數(shù)列的公差為,則,將代入,化簡得對于恒成立則有,解得.所以選①③作條件證明②:因為,是等差數(shù)列,所以公差,所以,即,因為,所以是等差數(shù)列.選②③作條件證明①:[方法一]:設(shè),則,當時,;當時,;因為,所以,解得或;當時,,當時,滿足等差數(shù)列的定義,此時為等差數(shù)列;當時,,不合題意,舍去.綜上可知為等差數(shù)列.[方法二]【最優(yōu)解】:因為,所以,,因為也為等差數(shù)列,所以公差,所以,故,當時,,當時,滿足上式,故的通項公式為,所以,,符合題意.【整體點評】這類題型在解答題后可證是等差數(shù)列;法二:利用是等差數(shù)列即前兩項的差求出公差,然后求出的通項公式,利用,求出的通項公式,進而證明出結(jié)論.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,(2)【解析】(1)利用及已知即可得到證明,從而求得通項公式;(2)先求出通項,再利用錯位相減法求和即可.【小問1詳解】因,當時,,所以,當時,,又,解得,所以是以2為首項,2為公比的等比數(shù)列,故【小問2詳解】因為,所以,,,,所以,所以18、(1)焦點坐標為,,頂點坐標為,,漸近線方程為;(2).【解析】(1)根據(jù)雙曲線方程確定,即可按照概念對應(yīng)寫出焦點坐標、頂點坐標和漸近線方程;(2)先求(用表示),再根據(jù)解不等式得結(jié)果.【詳解】(1)當時,雙曲線方程化為,所以,,,所以焦點坐標為,,頂點坐標為,,漸近線方程為.(2)因為,所以,解得,所以實數(shù)的取值范圍是【點睛】本題根據(jù)雙曲線方程求焦點坐標、頂點坐標和漸近線方程,根據(jù)離心率求參數(shù)范圍,考查基本分析求解能力,屬基礎(chǔ)題.19、(1)(2)【解析】(1)根據(jù)遞推關(guān)系結(jié)合等比數(shù)列的定義可求解;(2)根據(jù)(1)化簡,利用裂項相消法求出數(shù)列的前n項和.小問1詳解】當時,,所以,即,當時,,得,則所以數(shù)列是首項為﹣1,公比為3的等比數(shù)列所以【小問2詳解】由(1)得:所以,所以20、(1)證明見解析(2)【解析】(1)過作,垂足為,利用正余弦定理可證,再利用線線垂足證明線面垂直,進而可得證;(2)以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系,利用坐標法求線面夾角的正弦值.【小問1詳解】證明:由已知可得四邊形是等腰梯形,過作,垂足為,則,在中,,則,可得,在中,由余弦定理可得,,則,,又平面,平面,,,,平面,平面,又為矩形,,則平面,而平面,;【小問2詳解】平面,且,以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系,則,,,,,設(shè),則,又,設(shè)平面的法向量為,由,取,得,又,,,,則.21、(1);(2).【解析】(1)首先將圓的參數(shù)方程華為普通方程,再轉(zhuǎn)化為極坐標方程即可.(2)首先聯(lián)立得到,再求的長度即可.【詳解】(1)將曲線C的參數(shù)方程,(為參數(shù))化為普通方程,得,極坐標方程為.(2)聯(lián)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東司法警官職業(yè)學院《英語視聽說IV》2023-2024學年第一學期期末試卷
- 廣東省外語藝術(shù)職業(yè)學院《現(xiàn)代漢語(二)》2023-2024學年第一學期期末試卷
- 廣東輕工職業(yè)技術(shù)學院《物聯(lián)網(wǎng)移動應(yīng)用開發(fā)實踐》2023-2024學年第一學期期末試卷
- 廣東石油化工學院《土木工程專業(yè)導(dǎo)論》2023-2024學年第一學期期末試卷
- 廣東南方職業(yè)學院《兒童文學理論教學》2023-2024學年第一學期期末試卷
- 廣東茂名幼兒師范??茖W?!懂a(chǎn)品形態(tài)設(shè)計基礎(chǔ)》2023-2024學年第一學期期末試卷
- 廣東茂名健康職業(yè)學院《小學隊原理與實踐》2023-2024學年第一學期期末試卷
- 廣東理工職業(yè)學院《口腔內(nèi)科學1》2023-2024學年第一學期期末試卷
- 五年級數(shù)學(小數(shù)四則混合運算)計算題專項練習及答案匯編
- 2022年施工實習報告
- 新入職員工年終工作總結(jié)課件
- 中華傳統(tǒng)文化之文學瑰寶學習通超星期末考試答案章節(jié)答案2024年
- 07FK02防空地下室通風設(shè)備安裝PDF高清圖集
- ANSI-ASQ-Z1.4-抽樣標準培訓(xùn)教材
- 思想品德鑒定表(學生模板)
- 滿堂支架計算
- MA5680T開局配置
- (完整word版)澳大利亞簽證54表(家庭構(gòu)成)
- 螺桿式風冷冷水(熱泵)機組電路圖
- CFG樁施工記錄表范本
- 《錄音技術(shù)與藝術(shù)》課程教學大綱(新版)(共11頁)
評論
0/150
提交評論