版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高一數(shù)學(xué)必修一知識(shí)點(diǎn)和公式三角函數(shù)公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))積化和差2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)和差化積sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgB=sin(A+B)/sinAsinB-ctgA+ctgB=sin(A+B)/sinAsin集合與函數(shù)概念一,集合有關(guān)概念1,集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素.2,集合的中元素的三個(gè)特性:(1)元素的確定性;(2)元素的互異性;(3)元素的無(wú)序性說(shuō)明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素.(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素.(3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性.3,集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:a={我校的籃球隊(duì)員},b={1,2,3,4,5}2.集合的表示方法:列舉法與描述法.注意:常用數(shù)集及其記法:非負(fù)整數(shù)集(即自然數(shù)集)記作:n正整數(shù)集n*或n+整數(shù)集z有理數(shù)集q實(shí)數(shù)集r關(guān)于"屬于"的概念集合的元素通常用小寫的拉丁字母表示,如:a是集合a的元素,就說(shuō)a屬于集合a記作a∈a列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上.描述法:將集合中的元素的公共屬性描述出來(lái),寫在大括號(hào)內(nèi)表示集合的方法.用確定的條件表示某些象是否屬于這個(gè)集合的方法.(1)語(yǔ)言描述法:例:{不是直角三角形的三角形}(2)數(shù)學(xué)式子描述法:例:不等式x-3]2的解集是{x(r|x-3]2}或{x|x-3]2}4,集合的分類:1.有限集含有有限個(gè)元素的集合2.無(wú)限集含有無(wú)限個(gè)元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二,集合間的基本關(guān)系1."包含"關(guān)系—子集注意:有兩種可能(1)a是b的一部分,;(2)a與b是同一集合.反之:集合a不包含于集合b,或集合b不包含集合a,記作ab或ba2."相等"關(guān)系(5≥5,且5≤5,則5=5)實(shí)例:設(shè)a={x|x2-1=0}b={-1,1}"元素相同"結(jié)論:對(duì)于兩個(gè)集合a與b,如果集合a的任何一個(gè)元素都是集合b的元素,同時(shí),集合b的任何一個(gè)元都是集合a的元素,我們就說(shuō)集合a等于集合b,即:a=b(1)任何一個(gè)集合是它本身的子集.(2)真子集:如果a(b,且a(b那就說(shuō)集合a是集合b的真子集,記作ab(或ba)(3)如果a(b,b(c,那么a(c(4)如果a(b同時(shí)b(a那么a=b3.不含任何元素的集合叫做空集,記為φ規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集.三,集合的運(yùn)算1.交集的定義:一般地,由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集.記作a∩b(讀作"a交b"),即a∩b={x|x∈a,且x∈b}.2,并集的定義:一般地,由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,叫做a,b的并集.記作:ab(讀作"a并b"),即a∪b={x|x∈a,或x∈b}.3,交集與并集的性質(zhì):a∩a=a,a∩φ=φ,a∩b=b∩a,a∪a=a,a∪φ=a,a∪b=b∪a.4,全集與補(bǔ)集(1)補(bǔ)集:設(shè)s是一個(gè)集合,a是s的一個(gè)子集(即),由s中所有不屬于a的元素組成的集合,叫做s中子集a的補(bǔ)集(或余集)記作:csa即csa={x(x(s且x(a}(2)全集:如果集合s含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用u來(lái)表示.(3)性質(zhì):⑴cu(cua)=a⑵(cua)∩a=φ⑶(cua)∪a=u高一數(shù)學(xué)必修3公式1過(guò)兩點(diǎn)有且只有一條直線
2兩點(diǎn)之間線段最短
3同角或等角的補(bǔ)角相等
4同角或等角的余角相等
5過(guò)一點(diǎn)有且只有一條直線和已知直線垂直
6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7平行公理經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行
8如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9同位角相等,兩直線平行
10內(nèi)錯(cuò)角相等,兩直線平行
11同旁內(nèi)角互補(bǔ),兩直線平行
12兩直線平行,同位角相等
13兩直線平行,內(nèi)錯(cuò)角相等
14兩直線平行,同旁內(nèi)角互補(bǔ)
15定理三角形兩邊的和大于第三邊
16推論三角形兩邊的差小于第三邊
17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°
18推論1直角三角形的兩個(gè)銳角互余
19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
24推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)
31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
35推論1三個(gè)角都相等的三角形是等邊三角形
36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
37在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半
38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
45逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形
48定理四邊形的內(nèi)角和等于360°
49四邊形的外角和等于360°
50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
51推論任意多邊的外角和等于360°
52平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等
53平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等
54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分
56平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形
60矩形性質(zhì)定理1矩形的四個(gè)角都是直角
61矩形性質(zhì)定理2矩形的對(duì)角線相等
62矩形判定定理1有三個(gè)角是直角的四邊形是矩形
63矩形判定定理2對(duì)角線相等的平行四邊形是矩形
64菱形性質(zhì)定理1菱形的四條邊都相等
65菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
66菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1四邊都相等的四邊形是菱形
68菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形
69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等
70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
71定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
72定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分
73逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一
點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等
75等腰梯形的兩條對(duì)角線相等
76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形
77對(duì)角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段
相等,那么在其他直線上截得的線段也相等
79推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
80推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第
三邊
81三角形中位線定理三角形的中位線平行于第三邊,并且等于它
的一半
82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的
一半L=(a+b)÷2S=L×h
83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d
85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)
線段成比例
87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例
88定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似
91相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)
92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
93判定定理2兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)
94判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三
角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
96性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平
分線的比都等于相似比
97性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比
98性質(zhì)定理3相似三角形面積的比等于相似比的平方
99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等
于它的余角的正弦值
100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等
于它的余角的正切值
101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104同圓或等圓的半徑相等
105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半
徑的圓
106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直
平分線
107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距
離相等的一條直線
109定理不在同一直線上的三點(diǎn)確定一個(gè)圓。
110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
112推論2圓的兩條平行弦所夾的弧相等
113圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
114定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦
相等,所對(duì)的弦的弦心距相等
115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
116定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
117推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
118推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所
對(duì)的弦是直徑
119推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形
120定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它
的內(nèi)對(duì)角
121①直線L和⊙O相交d<r
②直線L和⊙O相切d=r
③直線L和⊙O相離d>r
122切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線
123切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑
124推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)
125推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
126切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,
圓心和這一點(diǎn)的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對(duì)邊的和相等
128弦切角定理弦切角等于它所夾的弧對(duì)的圓周角
129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積
相等
131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的
兩條線段的比例中項(xiàng)
132切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割
線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)
133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等
134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
135①兩圓外離d>R+r②兩圓外切d=R+r
③兩圓相交R-r<d<R+r(R>r)
④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)
136定理相交兩圓的連心線垂直平分兩圓的公共弦
137定理把圓分成n(n≥3):
⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)
142正三角形面積√3a/4a表示邊長(zhǎng)
143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長(zhǎng)計(jì)算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2
146內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)
實(shí)用工具:常用數(shù)學(xué)公式
公式分類公式表達(dá)式
乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理
判別式
b2-4ac=0注:方程有兩個(gè)相等的實(shí)根
b2-4ac>0注:方程有兩個(gè)不等的實(shí)根
b2-4ac<0注:方程沒(méi)有實(shí)根,有共軛復(fù)數(shù)根
三角函數(shù)公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h
正棱錐側(cè)面積S=1/2c*h'正棱臺(tái)側(cè)面積S=1/2(c+c')h'
圓臺(tái)側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2
圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l
弧長(zhǎng)公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h
斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長(zhǎng)
柱體體積公式V=s*h圓柱體V=pi*r2h必須4一)兩角和差公式(寫的都要記)
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
二)用以上公式可推出下列二倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2
(上面這個(gè)余弦的很重要)
sin2A=2sinA*cosA
三)半角的只需記住這個(gè):
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
四)用二倍角中的余弦可推出降冪公式
(sinA)^2=(1-cos2A)/2
(cosA)^2=(1+cos2A)/2
五)用以上降冪公式可推出以下常用的化簡(jiǎn)公式
1-cosA=sin^(A/2)*2
1-sinA=cos^(A/2)*2
+
一)兩角和差公式(寫的都要記)
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
二)用以上公式可推出下列二倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2
(上面這個(gè)余弦的很重要)
sin2A=2sinA*cosA
三)半角的只需記住這個(gè):
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
四)用二倍角中的余弦可推出降冪公式
(sinA)^2=(1-cos2A)/2
(cosA)^2=(1+cos2A)/2
五)用以上降冪公式可推出以下常用的化簡(jiǎn)公式
1-cosA=sin^(A/2)*2
1-sinA=cos^(A/2)*2必修5三角函數(shù)公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年設(shè)備借款擔(dān)保合同
- 設(shè)備進(jìn)場(chǎng)驗(yàn)收登記制度(4篇)
- 范進(jìn)中舉課本劇
- 2025賓館公共區(qū)域綠化養(yǎng)護(hù)與美化合同3篇
- 2024年設(shè)計(jì)服務(wù)外包合同范本版B版
- 2024養(yǎng)老院老年文化娛樂(lè)活動(dòng)合作協(xié)議3篇
- 2024版:某科技公司與某政府部門之間關(guān)于智慧城市建設(shè)技術(shù)服務(wù)的合同
- 2024年軟件知識(shí)產(chǎn)權(quán)許可與全球市場(chǎng)拓展協(xié)議2篇
- 麗水學(xué)院《中西醫(yī)結(jié)合實(shí)驗(yàn)診斷研究》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南有色金屬職業(yè)技術(shù)學(xué)院《外科》2023-2024學(xué)年第一學(xué)期期末試卷
- 醫(yī)療美容服務(wù)風(fēng)險(xiǎn)免責(zé)協(xié)議書
- 2024年鋁錠購(gòu)銷的合同雙方信息登記表
- 貴州省遵義市播州區(qū)2023-2024學(xué)年二年級(jí)上學(xué)期數(shù)學(xué)期末質(zhì)量監(jiān)測(cè)試卷
- 2024版智能硬件產(chǎn)品研發(fā)合作協(xié)議3篇
- 《乘用車越野性能主觀評(píng)價(jià)方法》
- 國(guó)家電網(wǎng)招聘之財(cái)務(wù)會(huì)計(jì)類題庫(kù)含完整答案(必刷)
- 幼師個(gè)人成長(zhǎng)發(fā)展規(guī)劃
- 2024-2025學(xué)年北師大版高二上學(xué)期期末英語(yǔ)試題及解答參考
- 乘風(fēng)化麟 蛇我其誰(shuí) 2025XX集團(tuán)年終總結(jié)暨頒獎(jiǎng)盛典
- 2024年同等學(xué)力申碩英語(yǔ)考試真題
- 鄉(xiāng)鎮(zhèn)長(zhǎng)任職表態(tài)發(fā)言3篇
評(píng)論
0/150
提交評(píng)論