版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準考證號學(xué)校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁2025屆山東省青州市九年級數(shù)學(xué)第一學(xué)期開學(xué)聯(lián)考模擬試題題號一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)如圖,兔子的三個洞口A、B、C構(gòu)成△ABC,獵狗想捕捉兔子,必須到三個洞口的距離都相等,則獵狗應(yīng)蹲守在()A.三條邊的垂直平分線的交點 B.三個角的角平分線的交點C.三角形三條高的交點 D.三角形三條中線的交點2、(4分)甲、乙、丙、丁四名射擊運動員在選拔賽中,每人射擊了10次、甲、乙兩人的成績?nèi)绫硭?,丙、丁兩人的成績?nèi)鐖D所示.欲選一名運動員參賽,從平均數(shù)和方差兩個因素分析,應(yīng)選().
甲
乙
平均數(shù)
9
8
方差
1
1
A.甲 B.乙 C.丙 D.丁3、(4分)若a>b,則下列式子正確的是()A.a(chǎn)﹣4>b﹣3 B.a(chǎn)<b C.3+2a>3+2b D.﹣3a>﹣3b4、(4分)如圖,將等邊△ABC沿直線BC平移到△DEF,使點E與點C重合,連接BD,若AB=2,則BD的長為()A.23 B.3 C.3 D.255、(4分)如圖,在ΔABC中,分別以點A,C為圓心,大于12AC長為半徑畫弧,兩弧相交于點M,N,作直線MN交BC于點D,連接AD.若AB=3,BC=4,則ΔABDA.7 B.8 C.9 D.106、(4分)下列計算錯誤的是()A. B. C. D.7、(4分)若關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則一次函數(shù)的圖象可能是:A. B. C. D.8、(4分)如圖,在□ABCD中,AB⊥AC,若AB=4,AC=6,則BD的長是()A.11 B.10 C.9 D.8二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)將直線y=3x﹣1向上平移1個單位長度,得到的一次函數(shù)解析式為_____.10、(4分)如圖,四邊形ABCD的對角線相交于點O,AO=CO,請?zhí)砑右粋€條件_________(只添一個即可),使四邊形ABCD是平行四邊形.11、(4分)甲,乙,丙三位同學(xué)近次快速閱讀模擬比賽成績平均分均為分,且甲,乙,丙的方差是,則發(fā)揮最穩(wěn)定的同學(xué)是__________.12、(4分)等邊三角形的邊長是4,則高AD_________(結(jié)果精確到0.1)13、(4分)△ABC中,AB=15,AC=13,高AD=12,則△ABC的面積為______________.三、解答題(本大題共5個小題,共48分)14、(12分)已知(如圖),點分別在邊上,且四邊形是菱形(1)請使用直尺與圓規(guī),分別確定點的具體位置(不寫作法,保留畫圖痕跡);(2)如果,點在邊上,且滿足,求四邊形的面積;(3)當時,求的值。15、(8分)如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點D,E.(1)求證:AE=2CE;(2)連接CD,請判斷△BCD的形狀,并說明理由.16、(8分)解方程:x(x﹣3)=1.17、(10分)第一個不透明的布袋中裝有除顏色外均相同的7個黑球、5個白球和若干個紅球每次搖勻后隨機摸出一個球,記下顏色后再放回袋中,通過大量重復(fù)摸球試驗后,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在0.4,估計袋中紅球的個數(shù).18、(10分)我們定義:如果兩個三角形的兩組對應(yīng)邊相等,且它們的夾角互補,我們就把其中一個三角形叫做另一個三角形的“夾補三角形”,同時把第三邊的中線叫做“夾補中線.例如:圖1中,△ABC與△ADE的對應(yīng)邊AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE邊的中線,則△ADE就是△ABC的“夾補三角形”,AF叫做△ABC的“夾補中線”.特例感知:(1)如圖2、圖3中,△ABC與△ADE是一對“夾補三角形”,AF是△ABC的“夾補中線”;①當△ABC是一個等邊三角形時,AF與BC的數(shù)量關(guān)系是:;②如圖3當△ABC是直角三角形時,∠BAC=90°,BC=a時,則AF的長是;猜想論證:(2)在圖1中,當△ABC為任意三角形時,猜想AF與BC的關(guān)系,并給予證明.拓展應(yīng)用:(3)如圖4,在四邊形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△PAD是等邊三角形,求證:△PCD是△PBA的“夾補三角形”,并求出它們的“夾補中線”的長.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)對于任意不相等的兩個正實數(shù)a,b,定義運算如下:如,如,那么________.20、(4分)八年級(4)班有男生24人,女生16人,從中任選1人恰是男生的事件是_______事件(填“必然”或“不可能”或“隨機”).21、(4分)當x=4時,二次根式的值為______.22、(4分)若關(guān)于x的分式方程有增根,則m的值為_______.23、(4分)計算:________________.二、解答題(本大題共3個小題,共30分)24、(8分)以△ABC的三邊在BC同側(cè)分別作三個等邊三角形△ABD,△BCE,△ACF,試回答下列問題:(1)四邊形ADEF是什么四邊形?請證明:(2)當△ABC滿足什么條件時,四邊形ADEF是矩形?(3)當△ABC滿足什么條件時,四邊形ADEF是菱形?(4)當△ABC滿足什么條件時,能否構(gòu)成正方形?(5)當△ABC滿足什么條件時,無法構(gòu)成四邊形?25、(10分)如圖,在□ABCD中,點E,F(xiàn)分別在邊AB,DC上,且AE=CF,連接DE,BF.求證:DE=BF.26、(12分)已知,如圖:在平面直角坐標系中,O為坐標原點,四邊形OABC是矩形,點A、C的坐標分別為、,點D是OA的中點,點P在BC邊上運動,當是等腰三角形時,點Р的坐標為_______________.
參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、A【解析】
根據(jù)題意,知獵狗應(yīng)該到三個洞口的距離相等,則此點就是三角形三邊垂直平分線的交點.【詳解】解:獵狗到△ABC三個頂點的距離相等,則獵狗應(yīng)蹲守在△ABC的三條(邊垂直平分線)的交點.
故選:A.此題考查了線段垂直平分線的性質(zhì),以及三角形的角平分線、中線和高,熟練掌握性質(zhì)是解本題的關(guān)鍵.2、C【解析】
試題分析:丙的平均數(shù)==9,丙的方差=[1+1+1=1]=0.4,乙的平均數(shù)==8.2,由題意可知,丙的成績最好,故選C.考點:1、方差;2、折線統(tǒng)計圖;3、加權(quán)平均數(shù)3、C【解析】
根據(jù)不等式的性質(zhì)將a>b按照A、B、C、D四個選項的形式來變形看他們是否成立.【詳解】解:A、a>b?a﹣4>b﹣4或者a﹣3>b﹣3,故A選項錯誤;B、a>b?a>b,故B選項錯誤;C、a>b?2a>2b?3+2a>3+2b,故C選項正確;D、a>b?﹣3a<﹣3b,故D選項錯誤.故選C.考點:不等式的性質(zhì).4、A【解析】
利用平移的性質(zhì)得出BC,CF、DF的長,得∠BDF=90°,∠DBF=30°,可得結(jié)論.【詳解】解:由平移得:ΔABC?ΔDEF,∵ΔABC是等邊三角形,且AB=2,∴BC=EF=DF=2,∠DEF=60°,∴∠CBD=∠CDB=30°,∵∠CDF=60°,∴∠BDF=90°,RtΔBDF中,∴BD=23故選:A.此題主要考查了平移的性質(zhì)以及等邊三角形的性質(zhì),根據(jù)題意得出∠BDF=90°是解決問題的關(guān)鍵.5、A【解析】
利用基本作圖得到MN垂直平分AC,如圖,則DA=DC,然后利用等線段代換得到△ABD的周長=AB+BC.【詳解】解:由作法得MN垂直平分AC,如圖,
∴DA=DC,
∴△ABD的周長=AB+BD+AD=AB+BD+DC=AB+BC=3+4=1.
故選:A.本題考查了作圖-基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了線段垂直平分線的性質(zhì).6、D【解析】
根據(jù)二次根式的運算法則分別計算,再作判斷.【詳解】A、,選項正確;B、,選項正確;C、,選項正確;D、,選項錯誤.故選:D.本題主要考查二次根式的運算,解題的關(guān)鍵是熟練地掌握二次根式的運算法則.7、B【解析】
由方程有兩個不相等的實數(shù)根,可得,解得,即異號,當時,一次函數(shù)的圖象過一三四象限,當時,一次函數(shù)的圖象過一二四象限,故答案選B.8、B【解析】
利用平行四邊形的性質(zhì)可知AO=2,在Rt△ABO中利用勾股定理可得BO=5,則BD=2BO=1.【詳解】解:∵四邊形ABCD是平行四邊形,∴BD=2BO,AO=OC=2.在Rt△ABO中,利用勾股定理可得:BO=3∴BD=2BO=1.故選:B.本題主要考查了平行四邊形的性質(zhì)、勾股定理.解題的技巧是平行四邊形轉(zhuǎn)化為三角形問題解決.二、填空題(本大題共5個小題,每小題4分,共20分)9、y=3x.【解析】
根據(jù)“上加、下減”的原則進行解答即可.【詳解】由“上加、下減”的原則可知,將函數(shù)y=3x﹣1的圖象向上平移1個單位所得函數(shù)的解析式為y=3x﹣1+1=3x.故答案為y=3x.本題考查的是一次函數(shù)的圖象與幾何變換,熟知“上加、下減”的原則是解答此題的關(guān)鍵.10、BO=DO.【解析】
解:∵AO=CO,BO=DO,∴四邊形ABCD是平行四邊形.故答案為BO=DO.11、丙【解析】
方差反應(yīng)了一組數(shù)據(jù)的波動情況,方差越大,波動越大,越不穩(wěn)定;方差越小,波動越小,越穩(wěn)定,據(jù)此進一步判斷即可.【詳解】∵,,,∴丙同學(xué)的方差最小,∴發(fā)揮最穩(wěn)定的同學(xué)是丙,故答案為:丙.本題主要考查了方差的意義,熟練掌握相關(guān)概念是解題關(guān)鍵.12、3.1【解析】
根據(jù)等邊三角形的性質(zhì)及勾股定理進行計算即可.【詳解】如圖,三角形ABC為等邊三角形,AD⊥BC,AB=4,∵三角形ABC為等邊三角形,AD⊥BC,∴BD=CD=2,在中,.故答案為:3.1.本題考查等邊三角形的性質(zhì)和勾股定理,掌握“三線合一”的性質(zhì)及勾股定理是解題關(guān)鍵.13、84或24【解析】分兩種情況考慮:①當△ABC為銳角三角形時,如圖1所示,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AB=15,AD=12,根據(jù)勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根據(jù)勾股定理得:DC==5,∴BC=BD+DC=9+5=14,則S△ABC=BC?AD=84;②當△ABC為鈍角三角形時,如圖2所示,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,AB=15,AD=12,根據(jù)勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根據(jù)勾股定理得:DC==5,∴BC=BD?DC=9?5=4,則S△ABC=BC?AD=24.綜上,△ABC的面積為24或84.故答案為24或84.點睛:此題考查了勾股定理,利用了分類討論的數(shù)學(xué)思想,靈活運用勾股定理是解本題的關(guān)鍵.三、解答題(本大題共5個小題,共48分)14、(1)詳見解析;(2);(3)【解析】
(1)作△ABC的角平分線AE,作線段AE的垂直平分線交AB于D,交AC于F,連接DE、EF,四邊形ADEF即為所求;(2)由題意,當∠A=60°,AD=4時,△ADF,△EFD,△EMD都是等邊三角形,邊長為4,由此即可解決問題;(3)利用三角形的中位線定理即可解決問題.【詳解】(1)D,E,F(xiàn)的位置如圖所示.(2)由題意,當∠A=60°,AD=4時,△ADF,△EFD,△EMD都是等邊三角形,邊長為4,∴S四邊形AFEM=3××42=12;(3)當AB=AC時,易知DE是△ABC的中位線,∴DE=AC∴=.本題考查菱形的判定和性質(zhì),復(fù)雜作圖,等邊三角形的性質(zhì),三角形的中位線定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.15、見解析【解析】
(1)連接BE,根據(jù)線段垂直平分線的性質(zhì)可得AE=BE,利用等邊對等角的性質(zhì)可得∠ABE=∠A;結(jié)合三角形外角的性質(zhì)可得∠BEC的度數(shù),再在Rt△BCE中結(jié)合含30°角的直角三角形的性質(zhì),即可證明第(1)問的結(jié)論;(2)根據(jù)直角三角形斜邊中線的性質(zhì)可得BD=CD,再利用直角三角形銳角互余的性質(zhì)可得到∠ABC=60°,至此不難判斷△BCD的形狀【詳解】(1)證明:連結(jié)BE,如圖.∵DE是AB的垂直平分線,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC-∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE.(2)解:△BCD是等邊三角形.理由如下:∵DE垂直平分AB,∴D為AB的中點.∵∠ACB=90°,∴CD=BD.又∵∠ABC=60°,∴△BCD是等邊三角形.此題考查了線段垂直平分線的性質(zhì)、30°角的直角三角形的性質(zhì),等腰三角形的性質(zhì),直角三角形斜邊的中線等于斜邊的一半,等邊三角形的判定,熟練掌握30°角的直角三角形的性質(zhì)是解(1)的關(guān)鍵,熟練掌握直角三角形斜邊的中線等于斜邊的一半是解(2)的關(guān)鍵,16、x2=2,x2=﹣2【解析】
把方程化成一般形式,用十字相乘法因式分解求出方程的根.【詳解】解:x2﹣3x﹣2=0(x﹣2)(x+2)=0x﹣2=0或x+2=0∴x2=2,x2=﹣2.本題考查了一元二次方程的解法,根據(jù)題目特點,可以靈活選擇合適的方法進行解答,使計算變得簡單.17、估計袋中紅球8個.【解析】
根據(jù)摸到紅球的頻率,可以得到摸到黑球和白球的概率之和,從而可以求得總的球數(shù),從而可以得到紅球的個數(shù).【詳解】解:由題意可得:摸到黑球和白球的頻率之和為:,總的球數(shù)為:,紅球有:(個.答:估計袋中紅球8個.此題主要考查了利用頻率估計概率,本題利用了用大量試驗得到的頻率可以估計事件的概率.關(guān)鍵是根據(jù)紅球的頻率得到相應(yīng)的等量關(guān)系.18、(1)AF=BC;a;(2)猜想:AF=BC,(3)【解析】
(1)①先判斷出AD=AE=AB=AC,∠DAE=120°,進而判斷出∠ADE=30°,再利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論;②先判斷出△ABC≌△ADE,利用直角三角形的性質(zhì)即可得出結(jié)論;(2)先判斷出△AEG≌△ACB,得出EG=BC,再判斷出DF=EF,即可得出結(jié)論;(3)先判斷出四邊形PHCD是矩形,進而判斷出∠DPC=30°,再判斷出PB=PC,進而求出∠APB=150°,即可利用“夾補三角形”即可得出結(jié)論.【詳解】解:(1)∵△ABC與△ADE是一對“夾補三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,①∵△ABC是等邊三角形,∴AB=AC=BC,∠BAC=60°∴AD=AE=AB=AC,∠DAE=120°,∴∠ADE=30°,∵AF是“夾補中線”,∴DF=EF,∴AF⊥DE,在Rt△ADF中,AF=AD=AB=BC,故答案為:AF=BC;②當△ABC是直角三角形時,∠BAC=90°,∵∠DAE=90°=∠BAC,易證,△ABC≌△ADE,∴DE=BC,∵AF是“夾補中線”,∴DF=EF,∴AF=DE=BC=a,故答案為a;(2)解:猜想:AF=BC,理由:如圖1,延長DA到G,使AG=AD,連EG∵△ABC與△ADE是一對“夾補三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,∴AG=AB,∠EAG=∠BAC,AE=AC,∴△AEG≌△ACB,∴EG=BC,∵AF是“夾補中線”,∴DF=EF,∴AF=EG,∴AF=BC;(3)證明:如圖4,∵△PAD是等邊三角形,∴DP=AD=3,∠ADP=∠APD=60°,∵∠ADC=150°,∴∠PDC=90°,作PH⊥BC于H,∵∠BCD=90°∴四邊形PHCD是矩形,∴CH=PD=3,∴BH=6﹣3=3=CH,∴PC=PB,在Rt△PCD中,tan∠DPC=,∴∠DPC=30°∴∠CPH=∠BPH=60°,∠APB=360°﹣∠APD﹣∠DPC﹣∠BPC=150°,∴∠APB+∠CPD=180°,∵DP=AP,PC=PB,∴△PCD是△PBA的“夾補三角形”,由(2)知,CD=,∴△PAB的“夾補中線”=.此題是四邊形綜合題,主要考查了全等三角形的判定和性質(zhì),含30度角的直角三角形的性質(zhì),銳角三角函數(shù),新定義的理解和掌握,理解新定義是解本題的關(guān)鍵.一、填空題(本大題共5個小題,每小題4分,共20分)19、【解析】
根據(jù)題目所給定義求解即可.【詳解】解:因為,所以.本題考查了二次根式的運算,屬于新定義題型,正確理解題中所給定義并進行應(yīng)用是解題的關(guān)鍵.20、隨機【解析】
根據(jù)必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.即可解答【詳解】從中任選一人,可能選的是男生,也可能選的是女生,故為隨機事件此題考查隨機事件,難度不大21、0【解析】
直接將,代入二次根式解答即可.【詳解】解:把x=4代入二次根式=0,故答案為:0此題主要考查了二次根式的定義,直接將代入求出,利用二次根式的性質(zhì)直接開平方是解決問題的關(guān)鍵.22、1【解析】
增根是化為整式方程后產(chǎn)生的不適合分式方程的根.所以應(yīng)先確定增根的可能值,讓最簡公分母,得到,然后代入化為整式方程的方程算出m的值.【詳解】解:方程兩邊都乘,得∵原方程有增根,∴最簡公分母,解得,當時,故m的值是1,故答案為1本題考查了分式方程的增根.增根問題可按如下步驟進行:①讓最簡公分母為0確定增根;②化分式方程為整式方程;③把增根代入整式方程即可求得相關(guān)字母的值.23、【解析】
二次根式相乘時,根號不變,直接把根號里面的數(shù)相乘,最后化簡.二次根式相加減時,只有同類的二次根式才能相加減,根號部分不變,把整數(shù)部分相加減.【詳解】原式=故答案為本題考察了二次根式的乘法和減法,這里需要注意的是,無論加減乘除,最后都要化為最簡二次根式.二、解答題(本大題共3個小題,共30分)24、(1)見解析;(2)當△ABC中的∠BAC=150°時,四邊形ADEF是矩形;(3)當△ABC中的AB=AC時,四邊形ADEF是菱形;(4)當∠BAC=150°且AB=AC時,四邊形ADEF是正方形;(5)當∠BAC=60°時,D、A、F為同一直線,與E點構(gòu)不成四邊形,即以A、D、E、F為頂點的四邊形不存在.【解析】
(1)通過證明△DBE≌△ABC,得到DE=AC,利用等邊三角形ACF,可得DE=AF,同理證明與全等,利用等邊三角形,得AD=EF,可得答案.(2)利用平行四邊形ADEF是矩形,結(jié)合已知條件等邊三角形得到即可.(3)利用平行四邊形ADEF是菱形形,結(jié)合已知條件等邊三角形得到即可.(4)結(jié)合(2)(3)問可得答案.(5)當四邊形ADEF不存在時,即出現(xiàn)三個頂點在一條直線上,因此可得答案?!驹斀狻拷猓海?)∵△BCE、△ABD是等邊三角形,∴∠DBA=∠EBC=60°,AB=BD,BE=BC,∴∠DBE=∠ABC,∴△DBE≌△ABC,∴DE=AC,又△ACF是等邊三角形,∴AC=AF,∴DE=AF,同理可證:AD=EF,∴四邊形ADEF是平行四邊形.(2)假設(shè)四邊形ADEF是矩形,則∠DAF=90°,又∠DAB=∠FAC=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年銷售業(yè)務(wù)員銷售業(yè)績提成與獎勵協(xié)議3篇
- 2025年度智能家居門窗系統(tǒng)設(shè)計與安裝服務(wù)合同3篇
- 2025版智能社區(qū)門禁管理系統(tǒng)委托運維合同4篇
- 2025版鋁型材門窗加工與綠色建筑節(jié)能評估合同4篇
- 二零二五年度駕校學(xué)員檔案管理承包合同3篇
- 2025年度VRAR游戲開發(fā)個人外包服務(wù)合同范本4篇
- 2025年智能停車場運營管理租賃合同模板4篇
- 2025年度餐飲企業(yè)員工培訓(xùn)與職業(yè)發(fā)展合同6篇
- 二零二五年度貨運運輸合同模板-智能物流服務(wù)協(xié)議6篇
- 2025版品牌侵權(quán)訴訟擔(dān)保委托協(xié)議3篇
- 春節(jié)聯(lián)歡晚會節(jié)目單課件模板
- 中國高血壓防治指南(2024年修訂版)
- 糖尿病眼病患者血糖管理
- 抖音音樂推廣代運營合同樣本
- 2024年電信綜合部辦公室主任年度述職報告(四篇合集)
- 微機原理與接口技術(shù)考試試題及答案(綜合-必看)
- 濕瘡的中醫(yī)護理常規(guī)課件
- 初中音樂聽課筆記20篇
- NUDD新獨難異 失效模式預(yù)防檢查表
- 內(nèi)蒙古匯能煤電集團有限公司長灘露天煤礦礦山地質(zhì)環(huán)境保護與土地復(fù)墾方案
- 排水干管通球試驗記錄表
評論
0/150
提交評論