版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆河南省新鄉(xiāng)一中等四校高三第十次模擬考試數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設全集,集合,則=()A. B. C. D.2.已知的內角、、的對邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.3.已知函數(shù)若函數(shù)在上零點最多,則實數(shù)的取值范圍是()A. B. C. D.4.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.5.已知雙曲線滿足以下條件:①雙曲線E的右焦點與拋物線的焦點F重合;②雙曲線E與過點的冪函數(shù)的圖象交于點Q,且該冪函數(shù)在點Q處的切線過點F關于原點的對稱點.則雙曲線的離心率是()A. B. C. D.6.已知是的共軛復數(shù),則()A. B. C. D.7.如圖,在中,,是上一點,若,則實數(shù)的值為()A. B. C. D.8.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則9.設集合、是全集的兩個子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.611.已知函數(shù)若恒成立,則實數(shù)的取值范圍是()A. B. C. D.12.某人造地球衛(wèi)星的運行軌道是以地心為一個焦點的橢圓,其軌道的離心率為,設地球半徑為,該衛(wèi)星近地點離地面的距離為,則該衛(wèi)星遠地點離地面的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設是等比數(shù)列的前項的和,成等差數(shù)列,則的值為_____.14.在平面直角坐標系中,已知圓,圓.直線與圓相切,且與圓相交于,兩點,則弦的長為_________15.若實數(shù)滿足不等式組,則的最小值是___16.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)記拋物線的焦點為,點在拋物線上,且直線的斜率為1,當直線過點時,.(1)求拋物線的方程;(2)若,直線與交于點,,求直線的斜率.18.(12分)已知直線與橢圓恰有一個公共點,與圓相交于兩點.(I)求與的關系式;(II)點與點關于坐標原點對稱.若當時,的面積取到最大值,求橢圓的離心率.19.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線的左焦點在直線上.(Ⅰ)求的極坐標方程和曲線的參數(shù)方程;(Ⅱ)求曲線的內接矩形的周長的最大值.20.(12分)已知是遞增的等差數(shù)列,,是方程的根.(1)求的通項公式;(2)求數(shù)列的前項和.21.(12分)數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設,為的前n項和,求證:.22.(10分)已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點,且與圓相切.(1)求的值;(2)動點在拋物線的準線上,動點在上,若在點處的切線交軸于點,設.求證點在定直線上,并求該定直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
先求得全集包含的元素,由此求得集合的補集.【詳解】由解得,故,所以,故選A.【點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎題.2、B【解析】
延長到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進而可得的面積.【詳解】解:延長到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點睛】本題考查余弦定理的應用,考查三角形面積公式的應用,其中根據(jù)中線作出平行四邊形是關鍵,是中檔題.3、D【解析】
將函數(shù)的零點個數(shù)問題轉化為函數(shù)與直線的交點的個數(shù)問題,畫出函數(shù)的圖象,易知直線過定點,故與在時的圖象必有兩個交點,故只需與在時的圖象有兩個交點,再與切線問題相結合,即可求解.【詳解】由圖知與有個公共點即可,即,當設切點,則,.故選:D.【點睛】本題考查了函數(shù)的零點個數(shù)的問題,曲線的切線問題,注意運用轉化思想和數(shù)形結合思想,屬于較難的壓軸題.4、A【解析】
首先的單調性,由此判斷出,由求得的關系式.利用導數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構造函數(shù),.構造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點睛】本小題主要考查利用導數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質,考查化歸與轉化的數(shù)學思想方法,屬于難題.5、B【解析】
由已知可求出焦點坐標為,可求得冪函數(shù)為,設出切點通過導數(shù)求出切線方程的斜率,利用斜率相等列出方程,即可求出切點坐標,然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點為,F(xiàn)關于原點的對稱點;,,所以,,設,則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.【點睛】本題考查雙曲線的性質,已知拋物線方程求焦點坐標,求冪函數(shù)解析式,直線的斜率公式及導數(shù)的幾何意義,考查了學生分析問題和解決問題的能力,難度一般.6、A【解析】
先利用復數(shù)的除法運算法則求出的值,再利用共軛復數(shù)的定義求出a+bi,從而確定a,b的值,求出a+b.【詳解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故選:A.【點睛】本題主要考查了復數(shù)代數(shù)形式的乘除運算,考查了共軛復數(shù)的概念,是基礎題.7、C【解析】
由題意,可根據(jù)向量運算法則得到(1﹣m),從而由向量分解的唯一性得出關于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關鍵,本題屬于基礎題.8、D【解析】
利用空間位置關系的判斷及性質定理進行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.【點睛】本題主要考查直線與平面平行、垂直的性質與判定等基礎知識;考查空間想象能力、推理論證能力,屬于基礎題.9、C【解析】
作出韋恩圖,數(shù)形結合,即可得出結論.【詳解】如圖所示,,同時.故選:C.【點睛】本題考查集合關系及充要條件,注意數(shù)形結合方法的應用,屬于基礎題.10、C【解析】
根據(jù)列方程,由此求得的值,進而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點睛】本小題主要考查向量垂直的表示,考查向量數(shù)量積的運算,考查向量模的求法,屬于基礎題.11、D【解析】
由恒成立,等價于的圖像在的圖像的上方,然后作出兩個函數(shù)的圖像,利用數(shù)形結合的方法求解答案.【詳解】因為由恒成立,分別作出及的圖象,由圖知,當時,不符合題意,只須考慮的情形,當與圖象相切于時,由導數(shù)幾何意義,此時,故.故選:D【點睛】此題考查的是函數(shù)中恒成立問題,利用了數(shù)形結合的思想,屬于難題.12、A【解析】
由題意畫出圖形,結合橢圓的定義,結合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠地點離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設衛(wèi)星近地點,遠地點離地面距離分別為r,n,如圖:則所以,,故選:A【點睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
設等比數(shù)列的公比設為再根據(jù)成等差數(shù)列利用基本量法求解再根據(jù)等比數(shù)列各項間的關系求解即可.【詳解】解:等比數(shù)列的公比設為成等差數(shù)列,可得若則顯然不成立,故則,化為解得,則故答案為:.【點睛】本題主要考查了等比數(shù)列的基本量求解以及運用,屬于中檔題.14、【解析】
利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【詳解】解:直線與圓相切,圓心為由,得或,當時,到直線的距離,不成立,當時,與圓相交于,兩點,到直線的距離,故答案為.【點睛】考查直線與圓的位置關系,相切和相交問題,屬于中檔題.15、-1【解析】作出可行域,如圖:由得,由圖可知當直線經過A點時目標函數(shù)取得最小值,A(1,0)所以-1故答案為-116、【解析】
求的最小值可以轉化為求以AB為直徑的圓到點O的最小距離,由此即可得到本題答案.【詳解】如圖所示,設,由題,得,又,所以,則點C在以AB為直徑的圓上,取AB的中點為M,則,設以AB為直徑的圓與線段OM的交點為E,則的最小值是,因為,又,所以的最小值是.故答案為:【點睛】本題主要考查向量的綜合應用問題,涉及到圓的相關知識與余弦定理,考查學生的分析問題和解決問題的能力,體現(xiàn)了數(shù)形結合的數(shù)學思想.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)0【解析】
(1)根據(jù)題意,設直線,與聯(lián)立,得,再由弦長公式,求解.(2)設,根據(jù)直線的斜率為1,則,得到,再由,所以線段中點的縱坐標為,然后直線的方程與直線的方程聯(lián)立解得交點H的縱坐標,說明直線軸,直線的斜率為0.【詳解】(1)依題意,,則直線,聯(lián)立得;設,則,解得,故拋物線的方程為.(2),因為直線的斜率為1,則,所以,因為,所以線段中點的縱坐標為.直線的方程為,即①直線的方程為,即②聯(lián)立①②解得即點的縱坐標為,即直線軸,故直線的斜率為0.如果直線的斜率不存在,結論也顯然成立,綜上所述,直線的斜率為0.【點睛】本題考查拋物線的方程、直線與拋物線的位置關系,還考查推理論證能力以及化歸與轉化思想,屬于中檔題.18、(Ⅰ)(II)【解析】
(I)聯(lián)立直線與橢圓的方程,根據(jù)判別式等于0,即可求出結果;(Ⅱ)因點與點關于坐標原點對稱,可得的面積是的面積的兩倍,再由當時,的面積取到最大值,可得,進而可得原點到直線的距離,再由點到直線的距離公式,以及(I)的結果,即可求解.【詳解】(I)由,得,則化簡整理,得;(Ⅱ)因點與點關于坐標原點對稱,故的面積是的面積的兩倍.所以當時,的面積取到最大值,此時,從而原點到直線的距離,又,故.再由(I),得,則.又,故,即,從而,即.【點睛】本題主要考查直線與橢圓的位置關系,以及橢圓的簡單性質,通常需要聯(lián)立直線與橢圓方程,結合韋達定理、判別式等求解,屬于中檔試題.19、(Ⅰ)曲線的參數(shù)方程為:(為參數(shù));的極坐標方程為;(Ⅱ)16.【解析】
(
I
)直接利用轉換關系,把參數(shù)方程、極坐標方程和直角坐標方程之間進行轉換;(
II
)利用三角函數(shù)關系式的恒等變換和正弦型函數(shù)的性質的應用,即可求出結果.【詳解】(Ⅰ)由題意:曲線的直角坐標方程為:,所以曲線的參數(shù)方程為(為參數(shù)),因為直線的直角坐標方程為:,又因曲線的左焦點為,將其代入中,得到,所以的極坐標方程為.(Ⅱ)設橢圓的內接矩形的頂點為,,,,所以橢圓的內接矩形的周長為:,所以當時,即時,橢圓的內接矩形的周長取得最大值16.【點睛】本題考查了曲線的參數(shù)方程,極坐標方程與普通方程間的互化,三角函數(shù)關系式的恒等變換,正弦型函數(shù)的性質的應用,極徑的應用,考查學生的求解運算能力和轉化能力,屬于基礎題型.20、(1);(2).【解析】
(1)方程的兩根為,由題意得,在利用等差數(shù)列的通項公式即可得出;(2)利用“錯位相減法”、等比數(shù)列的前項和公式即可求出.【詳解】方程x2-5x+6=0的兩根為2,3.由題意得a2=2,a4=3.設數(shù)列{an}的公差為d,則a4-a2=2d,故d=,從而得a1=.所以{an}的通項公式為an=n+1.(2)設的前n項和為Sn,由(1)知=,則Sn=++…++,Sn=++…++,兩式相減得Sn=+-=+-,所以Sn=2-.考點:等差數(shù)列的性質;數(shù)列的求和.【方法點晴】本題主要考查了等差數(shù)列的通項公式、“錯位相減法”、等比數(shù)列的前項和公式、一元二次方程的解法等知識點的綜合應用,解答中方程的兩根為,由題意得,即可求解數(shù)列的通項公式,進而利用錯位相減法求和是解答的關鍵,著重考查了學生的推理能力與運算能力,屬于中檔試題.21、(1)(2)證明見解析【解析】
(1)利用與的關系即可求解.(2)利用裂項求和法即可求解.【詳解】解析:(1)當時,;當,,可得,又∵當時也成立,;(2),【點睛】本題主要考查了與的關系、裂項求和法,屬于基礎題.22、(1);(2)點在定直線上.【解析】
(1)設出直線的方程為,由直線和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021屆重慶市縉云教育聯(lián)盟高一上學期期末數(shù)學試題(解析版)
- 《畜牧軟件系統(tǒng)介紹》課件
- 小學一年級100以內數(shù)學口算練習題大全
- 《結腸癌護理查房HY》課件
- 《海報設計》課件
- 天津市河北區(qū)2023-2024學年高三上學期期末質量檢測英語試題
- 能源行業(yè)環(huán)保意識培訓回顧
- 石油行業(yè)采購工作總結
- 辦公室衛(wèi)生消毒手冊
- 噴灌設備銷售工作總結
- 水電站施工合同水電站施工合同(2024版)
- 渭南市白水縣2021-2022學年七年級上學期期末考試數(shù)學試卷【帶答案】
- 2024時事政治必考試題庫附答案(滿分必刷)
- DZ∕T 0289-2015 區(qū)域生態(tài)地球化學評價規(guī)范(正式版)
- 公司年會小品《老同學顯擺大會》臺詞劇本手稿
- 護士條例課件
- 工程造價畢業(yè)設計總結報告
- 結腸鏡檢查前腸道準備
- 2023-2024學年統(tǒng)編版高中語文選擇性必修中冊《屈原列傳》檢測卷(含答案)
- 創(chuàng)業(yè)基礎知識競賽題庫及答案
- (高清版)TDT 1063-2021 國土空間規(guī)劃城市體檢評估規(guī)程
評論
0/150
提交評論