2025屆湖北省黃岡、華師附中等八校高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆湖北省黃岡、華師附中等八校高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆湖北省黃岡、華師附中等八校高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆湖北省黃岡、華師附中等八校高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆湖北省黃岡、華師附中等八校高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆湖北省黃岡、華師附中等八校高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若拋物線x2=8y上一點P到焦點的距離為9,則點P的縱坐標為()A. B.C.6 D.72.在直角坐標系中,直線的傾斜角是A.30° B.60°C.120° D.150°3.為了解青少年視力情況,統(tǒng)計得到名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個位數(shù),葉表示十分位數(shù),則該組數(shù)據(jù)的中位數(shù)是()A. B.C. D.4.在中,角A,B,C的對邊分別為a,b,c,若,且,則為()A.等腰三角形 B.直角三角形C.銳角三角形 D.鈍角三角形5.連續(xù)拋擲一枚均勻硬幣3次,事件“至少2次出現(xiàn)正面”的對立事件是()A.只有2次出現(xiàn)反面 B.至少2次出現(xiàn)正面C.有2次或3次出現(xiàn)正面 D.有2次或3次出現(xiàn)反面6.已知且,則下列不等式恒成立的是A. B.C. D.7.設是公比為的等比數(shù)列,則“”是“為遞增數(shù)列”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件8.如圖,在三棱錐中,點E在上,滿足,點F為的中點,記分別為,則()A. B.C. D.9.如圖,橢圓的右焦點為,過與軸垂直的直線交橢圓于第一象限的點,點關(guān)于坐標原點的對稱點為,且,,則橢圓方程為()A. B.C. D.10.已知直線:和直線:,拋物線上一動點P到直線和直線的距離之和的最小值是()A. B.C. D.11.已知是雙曲線:的右焦點,是坐標原點,過作的一條漸近線的垂線,垂足為,并交軸于點.若,則的離心率為()A. B.C.2 D.12.執(zhí)行如圖所示的程序框圖,則輸出的A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設直線的方向向量分別為,若,則實數(shù)m等于___________.14.已知函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)設上存在極大值M,證明:.15.已知是橢圓的兩個焦點,點M在C上,則的最大值為_______16.曲線在點處的切線與坐標軸圍成的三角形面積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:,經(jīng)過的直線與拋物線C交于A,B兩點(1)求的值(其中為坐標原點);(2)設F為拋物線C的焦點,直線為拋物線C的準線,直線是拋物線C的通徑所在的直線,過C上一點P()()作直線與拋物線相切,若直線與直線相交于點M,與直線相交于點N,證明:點P在拋物線C上移動時,恒為定值,并求出此定值18.(12分)已知拋物線,過點作直線(1)若直線的斜率存在,且與拋物線只有一個公共點,求直線的方程(2)若直線過拋物線的焦點,且交拋物線于兩點,求弦長19.(12分)已知等差數(shù)列的前項和為,數(shù)列是等比數(shù)列,,,,.(1)求數(shù)列和的通項公式;(2)若,設數(shù)列的前項和為,求.20.(12分)已知向量,,且.(1)求滿足上述條件的點M(x,y)的軌跡C的方程;(2)設曲線C與直線y=kx+m(k≠0)相交于不同的兩點P,Q,點A(0,1),當|AP|=|AQ|時,求實數(shù)m的取值范圍.21.(12分)已知圓的方程為:.(1)求的值,使圓的周長最??;(2)過作直線,使與滿足(1)中條件的圓相切,求的方程,并求切線段的長.22.(10分)已知橢圓:的長軸長為6,離心率為,長軸的左,右頂點分別為A,B(1)求橢圓的方程;(2)已知過點的直線交橢圓于M、N兩個不同的點,直線AM,AN分別交軸于點S、T,記,(為坐標原點),當直線的傾斜角為銳角時,求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設出P的縱坐標,利用拋物線的定義列出方程,求出答案.【詳解】由題意得:拋物線準線方程為,P點到拋物線的焦點的距離等于到準線的距離,設點縱坐標為,則,解得:.故選:D2、D【解析】根據(jù)直線方程得到直線的斜率后可得直線的傾斜角.【詳解】設直線的傾斜角為,則,因,故,故選D.【點睛】直線的斜率與傾斜角的關(guān)系是:,當時,直線的斜率不存在,注意傾斜角的范圍.3、B【解析】將樣本中的數(shù)據(jù)由小到大進行排列,利用中位數(shù)的定義可得結(jié)果.【詳解】將樣本中的數(shù)據(jù)由小到大進行排列,依次為:、、、、、、、、、,因此,這組數(shù)據(jù)的中位數(shù)為.故選:B.4、B【解析】由余弦定理可得,再利用可得答案.【詳解】因為,所以,由余弦定理,因為,所以,又,∴,故為直角三角形.故選:B.5、D【解析】根據(jù)對立事件的定義選擇【詳解】對立事件是指事件A和事件B必有一件發(fā)生,連續(xù)拋擲一枚均勻硬幣3次,“至少2次出現(xiàn)正面”即有2次或3次出現(xiàn)正面,對立事件為“有2次或3次出現(xiàn)反面”故選:D6、C【解析】∵且,∴∴選C7、D【解析】當時,不是遞增數(shù)列;當且時,是遞增數(shù)列,但是不成立,所以選D.考點:等比數(shù)列8、B【解析】利用空間向量加減、數(shù)乘的幾何意義,結(jié)合三棱錐用表示出即可.【詳解】由題設,,,,.故選:B9、C【解析】連結(jié),設,則,,由可求出,進而可求出,得出橢圓方程.【詳解】由題意設橢圓的方程:,設左焦點為,連結(jié),由橢圓的對稱性易得四邊形為平行四邊形,由得,又,設,則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點睛】關(guān)鍵點睛:本題考查了橢圓的標準方程求解及橢圓的簡單幾何性質(zhì),在求解橢圓標準方程時,關(guān)鍵是求解基本量,,.10、A【解析】根據(jù)已知條件,結(jié)合拋物線的定義,可得點P到直線和直線的距離之和,當B,P,F(xiàn)三點共線時,最小,再結(jié)合點到直線的距離公式,即可求解【詳解】∵拋物線,∴拋物線的準線為,焦點為,∴點P到準線的距離PA等于點P到焦點F的距離PF,即,∴點P到直線和直線的距離之和,∴當B,P,F(xiàn)三點共線時,最小,∵,∴,∴點P到直線和直線的距離之和的最小值為故選:A11、A【解析】由條件建立a,b,c的關(guān)系,由此可求離心率的值.【詳解】設,則,∵,∴,∴,∴,∴,∴,∴離心率,故選:A.12、B【解析】根據(jù)輸入的條件執(zhí)行循環(huán),并且每一次都要判斷結(jié)論是或否,直至退出循環(huán).【詳解】,,,;,【點睛】本題考查程序框圖,執(zhí)行循環(huán),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)向量垂直與數(shù)量積的等價關(guān)系,,計算即可.【詳解】因為,則其方向向量,,解得.故答案為:2.14、(1)在單調(diào)遞增,單調(diào)遞減;(2)詳見解析.【解析】(1)求得,利用和即可求得函數(shù)的單調(diào)性區(qū)間;(2)求得函數(shù)的解析式,求,對的情況進行分類討論得到函數(shù)有極大值的情形,再結(jié)合極大值點的定義進行替換、即可求解.【詳解】(1)由題意,函數(shù),則,當時,令,所以函數(shù)單調(diào)遞增;當時,令,即,解得或,令,即,解得,所以函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間中單調(diào)遞減,當時,令,即,解得或,令,即,解得,所以函數(shù)在單調(diào)遞增,在單調(diào)遞減.(2)由函數(shù),則,令,可得令,解得,當時.,函數(shù)在單調(diào)遞增,此時,所以,函數(shù)在上單調(diào)遞增,此時不存在極大值,當時,令解得,令,解得,所以上單調(diào)遞減,在上單調(diào)遞增,因為在上存在極大值,所以,解得,因為,易證明,存在時,,存在使得,當在區(qū)間上單調(diào)遞增,在區(qū)間單調(diào)遞減,所以當時,函數(shù)取得極大值,即,,由,所以【點睛】本題主要考查導數(shù)在函數(shù)中的綜合應用,以及不等式的證明,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于此類問題,通常要構(gòu)造新函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題15、16【解析】根據(jù)橢圓定義可得:,再用基本不等式求解.【詳解】由橢圓的定義可得:,由基本不等式得:,當且僅當時,等號成立,故的最大值為16故答案為:1616、【解析】運用導數(shù)的幾何意義進行求解即可.【詳解】由,所以,而,所以切線方程為:,令,得,令,得,所以三角形的面積為:,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析,定值為【解析】(1)設出直線的方程并與拋物線方程聯(lián)立,結(jié)合根與系數(shù)關(guān)系求得.(2)求得過點的拋物線的切線方程,由此求得兩點的坐標,通過化簡來證得為定值,并求得定值.【小問1詳解】依題意可知直線的斜率不為零,設直線的方程為,設,,消去并化簡得,所以,所以.小問2詳解】拋物線方程為,焦點坐標為,準線,通徑所在直線,在拋物線上,且,所以過點的拋物線的切線的斜率存在且不為零,設過點的切線方程為,由消去并化簡得,,將代入上式并化簡得,解得,所以切線方程為,令得,令得,,將代入上式并化簡得,所以為定值,且定值為.18、(1)或;(2)8【解析】(1)根據(jù)題意設直線的方程為,聯(lián)立,消去得,因為只有一個公共點,則求解.(2)拋物線的焦點為,設直線的方程為,聯(lián)立,消去得,再根據(jù)過拋物線焦點的弦長公式求解.【詳解】(1)設直線的方程為,聯(lián)立,消去得,則,解得或,∴直線的方程為:或(2)拋物線的焦點為,則直線的方程為,設,聯(lián)立,消去得,∴,∴【點睛】本題主要考查直線與拋物線的位置關(guān)系,還考查了運算求解的能力,屬于中檔題.19、(1),;(2).【解析】(1)設等差數(shù)列的公差為,等比數(shù)列的公比為,根據(jù)題意列出表達式,解出公比和公差,再根據(jù)等差數(shù)等比列的通項公式的求法求出通項即可;(2)根據(jù)第一問得到前n項和,數(shù)列,分組求和即可.解析:(1)設等差數(shù)列的公差為,等比數(shù)列的公比為,∵,,,,∴,∴,,∴,.(2)由(1)知,,∴,∴.20、(1)+y2=1;(2).【解析】(1)應用向量垂直的坐標表示得x2+3y2=3,即可寫出M的軌跡C的方程;(2)由直線與曲線C交于不同的兩點P(x1,y1),Q(x2,y2),設直線y=kx+m(k≠0),聯(lián)立方程整理所得方程有,且由根與系數(shù)關(guān)系用m,k表示x1+x2,x1x2,若N為PQ的中點結(jié)合|AP|=|AQ|知PQ⊥AN可得m、k的等量關(guān)系,結(jié)合即可求m的范圍.【詳解】(1)∵,即,∴,即有x2+3y2=3,即點M(x,y)的軌跡C的方程為+y2=1.(2)由得(1+3k2)x2+6kmx+3(m2-1)=0.∵曲線C與直線y=kx+m(k≠0)相交于不同的兩點,∴Δ=(6km)2-12(1+3k2)(m2-1)=12(3k2-m2+1)>0,即3k2-m2+1>0①,且x1+x2=,x1x2=.設P(x1,y1),Q(x2,y2),線段PQ的中點N(x0,y0),則.∵|AP|=|AQ|,即知PQ⊥AN,設kAN表示直線AN的斜率,又k≠0,∴kANk=-1.即·k=-1,得3k2=2m-1②,而3k2>0,有m>.將②代入①得2m1m2+1>0,即2m<0,解得0<m<2,∴m的取值范圍為.【點睛】思路點睛:1、由向量垂直,結(jié)合其坐標表示得到關(guān)于x,y的方程,寫出曲線C的標準方程即可.2、由直線與曲線C相交,聯(lián)立方程有,由|AP|=|AQ|得直線的垂直關(guān)系,即斜率之積為-1,進而可求參數(shù)的范圍.21、(1)(2)直線方程為或,切線段長度為4【解析】(1)先求圓的標準方程,由半徑最小則周長最??;(2)由,則圓的方程為:,直線和圓相切則圓心到直線的距離等于半徑,分直線與軸垂直和直線與軸不垂直兩種情況進行討論即可得解.進一步,利用圓的幾何性質(zhì)可求解切線的長度.【小問1詳解】,配方得:,當時,圓的半徑有最小值2,此時圓的周長最小.【小問2詳解】由(1)得,,圓的方程為:.當直線與軸垂直時,,此時直線與圓相切,符合條件;當直線與軸不垂直時,設為,由直線與圓相切得:,解得,所以切線方程為,即.綜上,直線方程為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論