重慶市綦江南州中學2025屆高一數學第一學期期末統(tǒng)考試題含解析_第1頁
重慶市綦江南州中學2025屆高一數學第一學期期末統(tǒng)考試題含解析_第2頁
重慶市綦江南州中學2025屆高一數學第一學期期末統(tǒng)考試題含解析_第3頁
重慶市綦江南州中學2025屆高一數學第一學期期末統(tǒng)考試題含解析_第4頁
重慶市綦江南州中學2025屆高一數學第一學期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市綦江南州中學2025屆高一數學第一學期期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.中國茶文化博大精深,某同學在茶藝選修課中了解到,茶水的口感與茶葉類型和水的溫度有關,某種綠茶用80℃左右的水泡制可使茶湯清澈明亮,營養(yǎng)也較少破壞.為了方便控制水溫,該同學聯想到牛頓提出的物體在常溫環(huán)境下溫度變化的冷卻模型:如果物體的初始溫度是℃,環(huán)境溫度是℃,則經過分鐘后物體的溫度℃將滿足,其中是一個隨著物體與空氣的接觸狀況而定的正常數.該同學通過多次測量平均值的方法得到初始溫度為100℃的水在20℃的室溫中,12分鐘以后溫度下降到50℃.則在上述條件下,℃的水應大約冷卻()分鐘沖泡該綠茶(參考數據:,)A.3 B.3.6C.4 D.4.82.表面積為24的正方體的頂點都在同一個球面上,則該球的表面積是A. B.C. D.3.《中華人民共和國個人所得稅法》規(guī)定,公民全月工資、薪金所得不超過5000元的部分不必納稅,超過5000元的部分為全月應納稅所得額,此項稅款按下表分段累計計算:全月應納稅所得額稅率不超過3000元的部分超過3000元至12000元的部分超過12000元至25000元的部分有一職工八月份收入20000元,該職工八月份應繳納個稅為()A.2000元 B.1500元C.990元 D.1590元4.若集合,集合,則()A.{5,8} B.{4,5,6,8}C.{3,5,7,8} D.{3,4,5,6,7,8}5.已知,,,則a,b,c的大小關系為()A. B.C. D.6.已知函數,則()A.5 B.2C.0 D.17.已知向量且,則x值為().A.6 B.-6C.7 D.-78.當生物死后,它體內的碳14含量會按確定的比率衰減(稱為衰減率),大約每經過5730年衰減為原來的一半.2010年考古學家對良渚古城水利系統(tǒng)中一條水壩的建筑材料草裹泥)上提取的草莖遺存進行碳14檢測,檢測出碳14的殘留量約為初始量的,以此推斷此水壩建成的年代大概是公元前()(參考數據:,)A.年 B.年C.年 D.年9.設則的最大值是()A.3 B.C. D.10.中國古詩詞中,有一道“八子分綿”的數學名題:“九百九十六斤綿,贈分八子作盤纏,次第每人多十七,要將第八數來言”題意是:把996斤綿分給8個兒子作盤纏,按照年齡從大到小的順序依次分綿,年齡小的比年齡大的多17斤綿.那么前3個兒子分到的綿的總數是()A.89斤 B.116斤C.189斤 D.246斤二、填空題:本大題共6小題,每小題5分,共30分。11.若,則a的取值范圍是___________12.已知正三棱柱的所有頂點都在球的球面上,且該正三棱柱的底面邊長為2,高為,則球的表面積為________13.設扇形的周長為,面積為,則扇形的圓心角的弧度數是________14.若函數是定義在上的嚴格增函數,且對一切x,滿足,則不等式的解集為___________.15.下圖是某機械零件的幾何結構,該幾何體是由兩個相同的直四棱柱組合而成的,且前后,左右、上下均對稱,每個四棱柱的底面都是邊長為2的正方形,高為4,且兩個四棱柱的側棱互相垂直.則這個幾何體的體積為________.16.某池塘里原有一塊浮萍,浮萍蔓延后的面積(單位:平方米)與時間(單位:月)的關系式為(且)圖象如圖所示.則下列結論:①浮萍蔓延每個月增長的面積都相同;②浮萍蔓延個月后的面積是浮萍蔓延個月后的面積的;③浮萍蔓延每個月增長率相同,都是;④浮萍蔓延到平方米所經過的時間與蔓延到平方米所經過的時間的和比蔓延到平方米所經過的時間少.其中正確結論的序號是_____三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在正方體中,為棱、的三等分點(靠近A點).求證:(1)平面;(2)求證:平面平面.18.(1)已知,求的值;(2)已知,求的值;19.已知函數的圖象關于原點對稱,且當時,(1)試求在R上的解析式;(2)畫出函數的圖象,根據圖象寫出它的單調區(qū)間.20.如圖,在正方體中,點分別是棱的中點.求證:(1)平面;(2)平面21.已知,.(1)若,求;(2)若,求實數的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據題意求出k的值,再將θ=80℃,=100℃,=20℃代入即可求得t的值.【詳解】由題可知:,沖泡綠茶時水溫為80℃,故.故選:B.2、A【解析】根據正方體的表面積,可求得正方體的棱長,進而求得體對角線的長度;由體對角線為外接球的直徑,即可求得外接球的表面積【詳解】設正方體的棱長為a因為表面積為24,即得a=2正方體的體對角線長度為所以正方體的外接球半徑為所以球的表面積為所以選A【點睛】本題考查了立體幾何中空間結構體的外接球表面積求法,屬于基礎題3、D【解析】根據稅款分段累計計算的方法,分段求得職工超出元的部分的納稅所得額,即可求解.【詳解】由題意,職工八月份收入為元,其中納稅部分為元,其中不超過3000元的部分,納稅額為元,超過3000元至12000元的部分,納稅額為元,超過12000元至25000元的部分,納稅額為元,所以該職工八月份應繳納個稅為元.故選:D.4、D【解析】根據并集的概念和運算即可得出結果.【詳解】由,得.故選:D5、D【解析】利用指數函數和對數函數的單調性求解.【詳解】因為,,,所以,故選:D6、C【解析】由分段函數,選擇計算.【詳解】由題意可得.故選:C.【點睛】本題考查分段函數的求值,屬于簡單題.7、B【解析】利用向量垂直的坐標表示可以求解.【詳解】因為,,所以,即;故選:B.【點睛】本題主要考查平面向量垂直的坐標表示,熟記公式是求解的關鍵,側重考查數學運算的核心素養(yǎng).8、B【解析】根據碳14的半衰期為5730年,即每5730年含量減少一半,設原來的量為,經過年后變成了,即可列出等式求出的值,即可求解.【詳解】解:根據題意可設原來的量為,經過年后變成了,即,兩邊同時取對數,得:,即,,,以此推斷此水壩建成的年代大概是公元前年.故選:B.9、D【解析】利用基本不等式求解.【詳解】因為所以,當且僅當,即時,等號成立,故選:D10、D【解析】利用等差數列的前項和的公式即可求解.【詳解】用表示8個兒子按照年齡從大到小得到的綿數,由題意得數列是公差為17的等差數列,且這8項的和為996,所以,解之得所以,即前3個兒子分到的綿是246斤故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】先通過的大小確定的單調性,再利用單調性解不等式即可【詳解】解:且,,得,又在定義域上單調遞減,,,解得故答案為:【點睛】方法點睛:在解決與對數函數相關的解不等式問題時,要優(yōu)先考慮利用對數函數的單調性來求解.在利用單調性時,一定要明確底數a的取值對函數增減性的影響,及真數必須為正的限制條件12、【解析】首先判斷正三棱柱外接球的球心,即上下底面正三角形中心連線的中點,然后構造直角三角形求半徑,代入公式求解.【詳解】如圖:設和分別是上下底面等邊三角形的中心,由題意可知連線的中點就是三棱柱外接球的球心,連接,是等邊三角形,且,,,球的表面積.故答案為:【點睛】本題考查求幾何體外接球的表面積的問題,意在考查空間想象能力和轉化與化歸和計算能力,屬于基礎題型.13、【解析】設扇形的半徑和弧長分別為,由題設可得,則扇形圓心角所對的弧度數是,應填答案14、【解析】根據題意,將問題轉化為,,再根據單調性解不等式即可得答案.【詳解】解:因為函數對一切x,滿足,所以,,令,則,即,所以等價于,因為函數是定義在上的嚴格增函數,所以,解得所以不等式的解集為故答案為:15、【解析】該幾何體體積等于兩個四棱柱的體積和減去兩個四棱柱交叉部分的體積,根據直觀圖分別進行求解即可.【詳解】該幾何體的直觀圖如圖所示,該幾何體的體積為兩個四棱柱的體積和減去兩個四棱柱交叉部分的體積.兩個四棱柱的體積和為.交叉部分的體積為四棱錐的體積的2倍.在等腰中,邊上的高為2,則由該幾何體前后,左右上下均對稱,知四邊形為邊長為的菱形.設的中點為,連接易證即為四棱錐的高,在中,又所以因為,所以,所以求體積為故答案為:【點睛】本題考查空間組合體的結構特征.關鍵點弄清楚幾何體的組成,屬于較易題目.16、②④【解析】由,可求得的值,可得出,計算出萍蔓延月至月份增長的面積和月至月份增長的面積,可判斷①的正誤;計算出浮萍蔓延個月后的面積和浮萍蔓延個月后的面積,可判斷②的正誤;計算出浮萍蔓延每個月增長率,可判斷③的正誤;利用指數運算可判斷④的正誤.【詳解】由已知可得,則.對于①,浮萍蔓延月至月份增長的面積為(平方米),浮萍蔓延月至月份增長的面積為(平方米),①錯;對于②,浮萍蔓延個月后的面積為(平方米),浮萍蔓延個月后的面積為(平方米),所以,浮萍蔓延個月后的面積是浮萍蔓延個月后的面積的,②對;對于③,浮萍蔓延第至個月的增長率為,所以,浮萍蔓延每個月增長率相同,都是,③錯;對于④,浮萍蔓延到平方米所經過的時間、蔓延到平方米所經過的時間的和蔓延到平方米的時間分別為、、,則,,,所以,,所以,浮萍蔓延到平方米所經過的時間與蔓延到平方米所經過的時間的和比蔓延到平方米所經過的時間少,④對.故答案為:②④.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析.【解析】(1)欲證:平面,根據直線與平面平行的判定定理可知,只需證與平面內一條直線平行,連接,可知,則,又平面,平面,滿足定理所需條件;(2)欲證:平面平面,根據面面垂直的判定定理可知,在平面內一條直線與平面垂直,而平面,平面,則,,滿足線面垂直的判定定理則平面,而平面,滿足定理所需條件【詳解】(1)證明:連接,在正方體中,對角線,又因為、為棱、的三等分點,所以,則,又平面,平面,所以平面(2)因為在正方體中,因為平面,而平面,所以,又因為在正方形中,,而,平面,平面,所以平面,又因為平面,所以平面平面【點睛】本題主要考查線面平行的判定定理和線面垂直的判定定理,以及考查對基礎知識的綜合應用能力和基本定理的掌握能力18、(1);(2)3.【解析】(1)根據指數的運算性質可得,再由與的關系求值即可.(2)由對數的運算性質可得,再由正余弦的齊次計算求目標式的值.【詳解】(1)由,可得:,∴,解得.(2)由,可得:,即,∴.19、(1)(2)函數圖象見解析,單調遞增區(qū)間為和,單調遞減區(qū)間為;【解析】(1)依題意是上的奇函數,即可得到,再設,根據時的解析式及奇函數的性質計算可得;(2)由(1)中的解析式畫出函數圖形,結合圖象得到函數的單調區(qū)間;【小問1詳解】解:的圖象關于原點對稱,是奇函數,又的定義域為,,解得設,則,當時,,,所以;【小問2詳解】解:由(1)可得的圖象如下所示:由圖象可知的單調遞增區(qū)間為和,單調遞減區(qū)間為;20、(1)證明見解析(2)證明見解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論