版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共4頁湖北省棗陽市錢崗中學(xué)2024-2025學(xué)年數(shù)學(xué)九上開學(xué)考試模擬試題題號一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)下列說法正確的是()A.為了解我國中學(xué)生課外閱讀的情況,應(yīng)采取全面調(diào)查的方式B.一組數(shù)據(jù)1、2、5、5、5、3、3的中位數(shù)和眾數(shù)都是5C.投擲一枚硬幣100次,一定有50次“正面朝上”D.若甲組數(shù)據(jù)的方差是0.03,乙組數(shù)據(jù)的方差是0.1,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定2、(4分)化簡的結(jié)果是()A.2 B.-4 C.4 D.±43、(4分)若一組數(shù)據(jù)3、4、5、x、6、7的平均數(shù)是5,則x的值是()A.4 B.5 C.6 D.74、(4分)在直線l上依次擺放著七個正方形(如圖所示).已知斜放置的三個正方形的面積分別是1、2、3,正放置的四個正方形的面積依次是S1、S2、S3、S4,則S1+S2+S3+S4的值為()A.6 B.5 C.4 D.35、(4分)菱形的兩條對角線的長分別為6cm、8cm,則菱形的邊長是()A.10cm B.7cm C.5cm D.4cm6、(4分)如圖,在中,度.以的三邊為邊分別向外作等邊三角形,,,若,的面積分別是8和3,則的面積是()A. B. C. D.57、(4分)函數(shù)y=x+m與y=(m≠0)在同一坐標(biāo)系內(nèi)的圖象可以是()A. B.C. D.8、(4分)下面四個美術(shù)字中可以看作軸對稱圖形的是()A. B. C. D.二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)已知y+1與x成正比例,則y是x的_____函數(shù).10、(4分)如圖,在△ABC中,AB=AC,BC=6,點F是BC的中點,點D是AB的中點,連接AF和DF,若△DBF的周長是11,則AB=_____.11、(4分)最簡二次根式與是同類二次根式,則a的取值為__________.12、(4分)如圖,在Rt△ABC中,∠ACB=90°,∠B=10°,BC=1.點D是BC邊上的一動點(不與點B、C重合),過點D作DE⊥BC交AB于點E,將∠B沿直線DE翻折,點B落在射線BC上的點F處.當(dāng)△AEF為直角三角形時,BD的長為_____.13、(4分)如圖,將八個邊長為1的小正方形擺放在平面直角坐標(biāo)系中,若過原點的直線將圖形分成面積相等的兩部分,則直線的函數(shù)關(guān)系式為______________.三、解答題(本大題共5個小題,共48分)14、(12分)某服裝制造廠要在開學(xué)前趕制3000套服裝,為了盡快完成任務(wù),廠領(lǐng)導(dǎo)合理調(diào)配,加強第一線人力,使每天完成的校服比原計劃多了20%,結(jié)果提前4天完成任務(wù).問原計劃每天能完成多少套校服?15、(8分)已知a+b=5,ab=6,求多項式a3b+2a2b2+ab3的值.16、(8分)如圖,四邊形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,請問△BCD是直角三角形嗎?請說明你的理由.17、(10分)如圖,AC、BD相交于點O,且O是AC、BD的中點,點E在四邊形ABCD外,且∠AEC=∠BED=90°,求證:邊形ABCD是矩形.18、(10分)如圖,在等腰△ABC中,AC=BC,D在BC上,P是射線AD上一動點.(1)如圖①,若∠ACB=90°,AC=8,CD=6,當(dāng)點P在線段AD上,且△PCD是等腰三角形時,求AP長.(2)如圖②,若∠ACB=90°,∠APC=45°,當(dāng)點P在AD延長線上時,探究PA,PB,PC的數(shù)量關(guān)系,并說明理由.(3)類比探究:如圖③,若∠ACB=120°,∠APC=30°,當(dāng)點P在AD延長線上時,請直接寫出表示PA,PB,PC的數(shù)量關(guān)系的等式.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)關(guān)于x的方程(m﹣2)x2+2x+1=0有實數(shù)根,則偶數(shù)m的最大值為_____.20、(4分)如圖,若在象棋盤上建立平面直角坐標(biāo)系xOy,使“帥”的坐標(biāo)為(﹣1,﹣2),“馬”的坐標(biāo)為(2,﹣2),則“兵”的坐標(biāo)為__.21、(4分)_______.22、(4分)?ABCD中,∠A=50°,則∠D=_____.23、(4分)如圖,已知四邊形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四邊形ABCD的面積為______。二、解答題(本大題共3個小題,共30分)24、(8分)如圖,在△ABC中,∠ABC=90°,將△ABC繞點C順時針旋轉(zhuǎn)得到△DEC,連接AD,BE,延長BE交AD于點F.(1)求證:∠DEF=∠ABF;(2)求證:F為AD的中點;(3)若AB=8,AC=10,且EC⊥BC,求EF的長.25、(10分)解方程:(1)3x(x﹣1)=2﹣2x;(2)2x2﹣4x﹣1=1.26、(12分)分解因式:(1)x(x+y)(x-y)-x(x+y)2(2)(x-1)2+2(1-x)?y+y2
參考答案與詳細(xì)解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、D【解析】
解:為了解我國中學(xué)生課外閱讀的情況,應(yīng)采取抽樣調(diào)查的方式,故選項A錯誤,把數(shù)據(jù)1、2、5、5、5、3、3從小到大排列1、2、3、3、5、5、5;所以中位數(shù)為:3;5出現(xiàn)的次數(shù)最多,所以眾數(shù)是5,故選項B錯誤,投擲一枚硬幣100次,可能有50次“正面朝上”,但不一定有50次“正面朝上”,故選項C錯誤,若甲組數(shù)據(jù)的方差是0.03,乙組數(shù)據(jù)的方差是0.1,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定,故選項D正確,故選D.本題考查全面調(diào)查與抽樣調(diào)查、中位數(shù)、眾數(shù)、方差,解答本題的關(guān)鍵是明確它們各自的含義.2、C【解析】
根據(jù)算術(shù)平方根的性質(zhì)直接進(jìn)行計算即可.【詳解】=|-1|=1.故選:C.本題考查的是算術(shù)平方根的定義,把化為|-1|的形式是解答此題的關(guān)鍵.3、B【解析】分析:根據(jù)平均數(shù)的定義計算即可;詳解:由題意(3+4+5+x+6+7)=5,解得x=5,故選B.點睛:本題考查平均數(shù)的定義,解題的關(guān)鍵是根據(jù)平均數(shù)的定義構(gòu)建方程解決問題4、C【解析】由勾股定理的幾何意義可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故選A.5、C【解析】
根據(jù)菱形的性質(zhì),可得到直角三角形,再利用勾股定理可求出邊長.【詳解】∵菱形的對角線互相垂直平分,∴兩條對角線的一半與菱形的邊長構(gòu)成直角三角形,∴菱形的邊長==5cm,故選C.本題考查菱形的性質(zhì),解決本題的關(guān)鍵是能根據(jù)菱形的對角線互相垂直得到直角三角形,再根據(jù)菱形的對角線互相平分得到直角三角形的兩直角邊.6、D【解析】
先設(shè)AC=b,BC=a,AB=c,根據(jù)勾股定理有c2+b2=a2,再根據(jù)等式性質(zhì)可得c2+b2=a2,再根據(jù)等邊三角形的性質(zhì)以及特殊三角函數(shù)值,易求得S3=×sin60°a?a=a2,同理可求S2=b2,S1=c2,從而可得S1+S2=S3,易求S1.【詳解】解:如圖,設(shè)等邊三角形△A'BC,△AB'C,△ABC'的面積分別是S3,S2,S1,設(shè)AC=b,BC=a,AB=c,∵△ABC是直角三角形,且∠BAC=90度,∴c2+b2=a2,∴c2+b2=a2,又∵S3=×sin60°a?a=a2,同理可求S2=b2,S1=c2,∴S1+S2=S3,∵S3=8,S2=3,∴S1=S3?S2=8?3=5,故選:D.本題考查了勾股定理,等邊三角形的性質(zhì)、特殊三角函數(shù)值的應(yīng)用.解題關(guān)鍵是根據(jù)等邊三角形的性質(zhì)求出每一個三角形的面積.7、C【解析】
根據(jù)一次函數(shù)y=x+m的圖象必過一、三象限,可判斷出選項B、D不符合題意,然后針對A、C選項,先根據(jù)一次函數(shù)的性質(zhì)判斷出m取值,再根據(jù)反比例函數(shù)的性質(zhì)判斷出m的取值,二者一致的即為正確答案.【詳解】一次函數(shù)y=x+m中,k=1>0,所以函數(shù)圖象必過一、三象限,觀察可知B、D選項不符合題意;A、由函數(shù)y=x+m的圖象可知m<0,由函數(shù)y=的圖象可知m>0,相矛盾,故錯誤;C、由函數(shù)y=x+m的圖象可知m>0,由函數(shù)y=的圖象可知m>0,正確,故選C.本題主要考查了反比例函數(shù)的圖象性質(zhì)和一次函數(shù)的圖象性質(zhì),要掌握它們的性質(zhì)才能靈活解題.8、D【解析】
根據(jù)軸對稱圖形的意義:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;據(jù)此判斷即可.【詳解】四個漢字中只有“善”字可以看作軸對稱圖形.故選D.本題考查了軸對稱圖形的知識,掌握軸對稱圖形的意義,判斷是不是軸對稱圖形的關(guān)鍵是找出對稱軸,看圖形沿對稱軸對折后兩部分能否完全重合.二、填空題(本大題共5個小題,每小題4分,共20分)9、一次【解析】
將y+1看做一個整體,根據(jù)正比例函數(shù)的定義列出解析式解答即可.【詳解】y+1與x成正比例,則y+1=kx,即y=kx-1,符合一次函數(shù)y=kx+b的定義條件:k、b為常數(shù),k≠0,自變量次數(shù)為1,則y是x的一次函數(shù).本題主要考查了一次函數(shù)的定義,一次函數(shù)y=kx+b的定義條件是:k、b為常數(shù),k≠0,自變量次數(shù)為1.k≠0是考查的重點.10、1【解析】
根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得DE=DF=AB,EF=BC,然后代入數(shù)據(jù)計算即可得解.【詳解】解:∵AF⊥BC,BE⊥AC,D是AB的中點,∴DE=DF=AB,∵AB=AC,AF⊥BC,∴點F是BC的中點,∴BF=FC=3,∵BE⊥AC,∴EF=BC=3,∴△DEF的周長=DE+DF+EF=AB+3=11,∴AB=1,故答案為1.本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),等腰三角形三線合一的性質(zhì),熟記各性質(zhì)是解題的關(guān)鍵.11、【解析】分析:根據(jù)最簡二次根式及同類二次根式的定義,令被開方數(shù)相等解方程.詳解:根據(jù)題意得,3a+1=2
解得,a=
故答案為.點睛:此題主要考查了最簡二次根式及同類二次根式的定義,正確理解同類二次根式的定義是解題的關(guān)鍵.12、1或2【解析】
解:據(jù)題意得:∠EFB=∠B=10°,DF=BD,EF=EB,∵DE⊥BC,∴∠FED=90°-∠EFD=60°,∠BEF=2∠FED=120°,∴∠AEF=180°-∠BEF=60°,∵在Rt△ABC中,∠ACB=90°,∠B=10°,BC=1,∴AC=AB,∠BAC=60°,設(shè)AC=x,則AB=2x,由勾股定理得:AC2+BC2=AB2,∴x2+12=(2x)2解得x=.如圖①若∠AFE=90°,∵在Rt△ABC中,∠ACB=90°,∴∠EFD+∠AFC=∠FAC+∠AFC=90°,∴∠FAC=∠EFD=10°,∴CF=AF,設(shè)CF=y(tǒng),則AF=2y,由勾股定理得CF2+AC2=AF2,∴y2+()2=(2y)2解得y=1,∴BD=DF=(BC?CF)=1;如圖②若∠EAF=90°,則∠FAC=90°-∠BAC=10°,同上可得CF=1,∴BD=DF=(BC+CF)=2,∴△AEF為直角三角形時,BD的長為:1或2.故答案為1或2.點睛:此題考查了直角三角形的性質(zhì)、折疊的性質(zhì)以及勾股定理的知識.此題難度適中,注意數(shù)形結(jié)合思想與分類討論思想的應(yīng)用.13、【解析】
設(shè)直線l和八個正方形的最上面交點為A,過點A作AB⊥OC于點C,易知OB=3,利用三角形的面積公式和已知條件求出A的坐標(biāo),再利用待定系數(shù)法可求出該直線l的解析式.【詳解】設(shè)直線l和八個正方形的最上面交點為A,過點A作AB⊥OC于點C∴OB=3∵經(jīng)過原點的直線將圖形分成面積相等的兩部分∴直線上方面積分是4∴三角形ABO的面積是5∴∴∴直線經(jīng)過點設(shè)直線l為則∴直線的函數(shù)關(guān)系式為本題考查了一次函數(shù),難點在于利用已知條件中的面積關(guān)系,熟練掌握一次函數(shù)相關(guān)知識點是解題關(guān)鍵.三、解答題(本大題共5個小題,共48分)14、原計劃每天能完成125套.【解析】試題解析:設(shè)原計劃每天能完成套衣服,由題意得解得:經(jīng)檢驗,是原分式方程的解.答:原計劃每天能完成125套.15、1【解析】
對所求的式子先提公因式,然后將a+b=5,ab=6代入即可解答本題.【詳解】∵a+b=5,ab=6,∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=6×52=6×25=1.本題考查因式分解的應(yīng)用,解答本題的關(guān)鍵是對所求式子變形,找出與已知式子之間的關(guān)系.16、△BCD是直角三角形【解析】
首先在Rt△BAD中,利用勾股定理求出BD的長,再根據(jù)勾股定理逆定理在△BCD中,證明△BCD是直角三角形.【詳解】△BCD是直角三角形,理由:在Rt△BAD中,∵AB=AD=2,∴BD==,在△BCD中,BD2+CD2=()2+12=9,BC2=32=9,∴BD2+CD2=BC2,△BCD是直角三角形.此題主要考查了勾股定理和勾股定理逆定理,關(guān)鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.17、見解析.【解析】
連接EO,首先根據(jù)O為BD和AC的中點,得出四邊形ABCD是平行四邊形,在Rt△AEC中EO=12AC,在Rt△EBD中,EO=12BD,得到【詳解】解:連接EO如圖所示:∵O是AC、BD的中點,∴AO=CO,BO=DO,∴四邊形ABCD是平行四邊形,在RtΔEBD中,∵O為BD中點,∴EO=1在RtΔAEC中,∵O為AC中點,∴EO=1∴AC=BD,又∵四邊形ABCD是平行四邊形,∴平行四邊形ABCD是矩形.此題主要考查了矩形的判定、平行四邊形的判定、直角三角形斜邊上的中線性質(zhì),關(guān)鍵是掌握直角三角形斜邊上的中線等于斜邊的一半.18、(1)滿足條件的AP的值為2.8或4或2;(2)PA﹣PB=PC.理由見解析;(3)PA﹣PB=PC.理由見解析.【解析】
(1)如圖①中,作CH⊥AD于H.利用面積法求出CH,利用勾股定理求出DH,再求出PD,接下來分三種情形解決問題即可;(2)結(jié)論:PA﹣PB=PC.如圖②中,作EC⊥PC交AP于E.只要證明△ACE≌△BCP即可解決問題;(3)結(jié)論:PA﹣PB=PC.如圖③中,在AP上取一點E,使得∠ECP=∠ACB=120°.只要證明△ACE≌△BCP即可解決問題;【詳解】(1)如圖①中,作CH⊥AD于H.在Rt△ACD中,AD==10,∵×AC×DC=×AD×CH,∴CH=,∴DH==,①當(dāng)CP=CD,∵CH⊥PD,∴PH=DH=,∴PD=,∴PA=AD﹣PD=10﹣=.②當(dāng)CD=DP時,DP=1.AP=10﹣1=4,③當(dāng)CP=PD時,易證AP=PD=2,綜上所述,滿足條件的AP的值為2.8或4或2.(2)結(jié)論:PA﹣PB=PC.理由:如圖②中,作EC⊥PC交AP于E.∵∠PCE=90°,∠CPE=42°,∴∠CEP=∠CPE=42°,∴CE=CP,PE=PC,∵∠ACB=∠ECP=90°,∴∠ACE=∠BCP,∵CA=CB,∴△ACE≌△BCP,∴AE=PB,∴PA﹣PB=PA﹣EA=PE=PC,∴PA﹣PB=PC.(3)結(jié)論:PA﹣PB=PC.理由:如圖③中,在AP上取一點E,使得∠ECP=∠ACB=120°.∵∠CEP=180°﹣120°﹣30°=30°,∴∠CEP=∠CPE,∴CE=CP.作CH⊥PE于H,則PE=PC,∵∠ACB=∠ECP,∴∠ACE=∠BCP,∵CA=CB,∴△ACE≌△BCP,∴AE=PB,∴PA﹣PB=PA﹣EA=PE=PC.本題考查三角形綜合題、等腰三角形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理、解直角三角形等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸題.一、填空題(本大題共5個小題,每小題4分,共20分)19、1【解析】
由方程有實數(shù)根,可得出b1﹣4ac≥0,代入數(shù)據(jù)即可得出關(guān)于m的一元一次不等式,解不等式即可得m的取值范圍,再找出其內(nèi)的最大偶數(shù)即可.【詳解】解:當(dāng)m﹣1=0時,原方程為1x+1=0,解得:x=﹣,∴m=1符合題意;當(dāng)m﹣1≠0時,△=b1﹣4ac=11﹣4(m﹣1)≥0,即11﹣4m≥0,解得:m≤3且m≠1.綜上所述:m≤3,∴偶數(shù)m的最大值為1.故答案為:1.本題考查了根的判別式以及解一元一次方程,分方程為一元一次或一元二次方程兩種情況找出m的取值范圍是解題的關(guān)鍵.20、(-3,1)【解析】
直接利用已知點坐標(biāo)得出原點的位置進(jìn)而得出答案.【詳解】解:如圖所示:“兵”的坐標(biāo)為:(-3,1).
故答案為(-3,1).本題考查坐標(biāo)確定位置,正確得出原點位置是解題關(guān)鍵.21、1【解析】
用配方法解題即可.【詳解】故答案為:1.本題主要考查配方法,掌握規(guī)律是解題關(guān)鍵.22、130°【解析】根據(jù)平行四邊形的鄰角互補,則∠D=23、36【解析】
連接AC,在直角三角形ABC中,由AB及BC的長,利用勾股定理求出AC的長,再由AD及CD的長,利用勾股定理的逆定理得到三角形ACD為直角三角形,根據(jù)四邊形ABCD的面積=直角三角形ABC的面積+直角三角形ACD的面積,即可求出四邊形的面積.【詳解】連接AC,如圖所示:∵∠B=90°,∴△ABC為直角三角形,又∵AB=3,BC=4,∴根據(jù)勾股定理得:AC==5,又∵CD=12,AD=13,∴AD=13=169,CD+AC=12+5=144+25=169,∴CD+AC=AD,∴△ACD為直角三角形,∠ACD=90°,則S四邊形ABCD=S△ABC+S△ACD=AB?BC+AC?CD=×3×4+×5×12=36,故四邊形ABCD的面積是36此題考查勾股定理的逆定理,勾股定理,解題關(guān)鍵在于作輔助線二、解答題(本大題共3個小題,共30分)24、(1)見解析;(2)見解析;(3)【解析】
(1)根據(jù)等角的余角相等證明即可;(2)如圖1中,作AN⊥BF于N,DM⊥BF交BF的延長線于M,首先證明△ANB≌△DME,可得AN=DM,然后證明△AFN≌△DFM,求出AF=FD即可;(3)如圖2中,作AN⊥BF于N,DM⊥BF交BF的延長線于M,想辦法求出FM,EM即可.【詳解】(1)證明:∵CB=CE,∴∠CBE=∠CEB,∵∠ABC=∠CED=90°,∴∠DEF+∠CEB=90°,∠ABF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年倉儲調(diào)味品調(diào)料存儲服務(wù)合同
- 2025年家用電器擔(dān)保協(xié)議
- 2025年家電修理技能合作協(xié)議
- 2025年品牌推廣策略合約
- 2025年代理商區(qū)塊鏈技術(shù)協(xié)議
- 2025年農(nóng)村房產(chǎn)過戶協(xié)議
- 2025年環(huán)境資源贈與合同
- 工地電工2025年度勞動合同規(guī)范范本14篇
- 2024裝修合同中的采購合同范本
- 2025版塑料回收利用項目投資合作合同范本3篇
- GB/T 44888-2024政務(wù)服務(wù)大廳智能化建設(shè)指南
- 2023-2024學(xué)年江西省萍鄉(xiāng)市八年級(上)期末物理試卷
- 四則混合運算100道題四年級上冊及答案
- 四川省高職單招電氣技術(shù)類《電子基礎(chǔ)》歷年考試真題試題庫(含答案)
- 中級半導(dǎo)體分立器件和集成電路裝調(diào)工技能鑒定考試題庫(含答案)
- 2024年江西生物科技職業(yè)學(xué)院單招職業(yè)技能測試題庫帶解析答案
- 橋本甲狀腺炎-90天治療方案
- (2024年)安全注射培訓(xùn)課件
- 2024版《建設(shè)工程開工、停工、復(fù)工安全管理臺賬表格(流程圖、申請表、報審表、考核表、通知單等)》模版
- 部編版《道德與法治》六年級下冊教材分析萬永霞
- 酒店人防管理制度
評論
0/150
提交評論