




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆福建省泉州市泉港區(qū)第六中學數(shù)學高三上期末質量跟蹤監(jiān)視模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了2.給出個數(shù),,,,,,其規(guī)律是:第個數(shù)是,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,以此類推,要計算這個數(shù)的和.現(xiàn)已給出了該問題算法的程序框圖如圖,請在圖中判斷框中的①處和執(zhí)行框中的②處填上合適的語句,使之能完成該題算法功能()A.; B.;C.; D.;3.函數(shù)的圖象的大致形狀是()A. B. C. D.4.已知函數(shù)f(x)=,若關于x的方程f(x)=kx-恰有4個不相等的實數(shù)根,則實數(shù)k的取值范圍是()A. B.C. D.5.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.6.若單位向量,夾角為,,且,則實數(shù)()A.-1 B.2 C.0或-1 D.2或-17.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內切 B.相交 C.外切 D.相離8.高斯是德國著名的數(shù)學家,近代數(shù)學奠基者之一,享有“數(shù)學王子”的稱號,用其名字命名的“高斯函數(shù)”為:設,用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域為()A. B. C. D.9.如圖,設為內一點,且,則與的面積之比為A. B.C. D.10.一個超級斐波那契數(shù)列是一列具有以下性質的正整數(shù):從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數(shù)列的個數(shù)為()A.3 B.4 C.5 D.611.直線與拋物線C:交于A,B兩點,直線,且l與C相切,切點為P,記的面積為S,則的最小值為A. B. C. D.12.若函數(shù)的圖象上兩點,關于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量滿足,,則______________.14.在某批次的某種燈泡中,隨機抽取200個樣品.并對其壽命進行追蹤調查,將結果列成頻率分布表如下:壽命(天)頻數(shù)頻率40600.30.4200.1合計2001某人從燈泡樣品中隨機地購買了個,如果這個燈泡的壽命情況恰好與按四個組分層抽樣所得的結果相同,則的最小值為______.15.某校初三年級共有名女生,為了了解初三女生分鐘“仰臥起坐”項目訓練情況,統(tǒng)計了所有女生分鐘“仰臥起坐”測試數(shù)據(jù)(單位:個),并繪制了如下頻率分布直方圖,則分鐘至少能做到個仰臥起坐的初三女生有_____________個.16.已知橢圓的左焦點為,點在橢圓上且在軸的上方,若線段的中點在以原點為圓心,為半徑的圓上,則直線的斜率是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,函數(shù),(是自然對數(shù)的底數(shù)).(Ⅰ)討論函數(shù)極值點的個數(shù);(Ⅱ)若,且命題“,”是假命題,求實數(shù)的取值范圍.18.(12分)某超市在節(jié)日期間進行有獎促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎機會.摸獎規(guī)則如下:獎盒中放有除顏色不同外其余完全相同的4個球(紅、黃、黑、白).顧客不放回的每次摸出1個球,若摸到黑球則摸獎停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.(1)求1名顧客摸球2次摸獎停止的概率;(2)記X為1名顧客摸獎獲得的獎金數(shù)額,求隨機變量X的分布列和數(shù)學期望.19.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式在上恒成立,求實數(shù)的取值范圍.20.(12分)已知函數(shù),,(1)討論的單調性;(2)若在定義域內有且僅有一個零點,且此時恒成立,求實數(shù)m的取值范圍.21.(12分)已知函數(shù).(Ⅰ)求的值;(Ⅱ)若,且,求的值.22.(10分)已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點B落在矩形的邊上,記該點為E,且折痕的兩端點M,N分別在邊上.設,的面積為S.(1)將l表示成θ的函數(shù),并確定θ的取值范圍;(2)求l的最小值及此時的值;(3)問當θ為何值時,的面積S取得最小值?并求出這個最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
假設若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎題.2、A【解析】
要計算這個數(shù)的和,這就需要循環(huán)50次,這樣可以確定判斷語句①,根據(jù)累加最的變化規(guī)律可以確定語句②.【詳解】因為計算這個數(shù)的和,循環(huán)變量的初值為1,所以步長應該為1,故判斷語句①應為,第個數(shù)是,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,這樣可以確定語句②為,故本題選A.【點睛】本題考查了補充循環(huán)結構,正確讀懂題意是解本題的關鍵.3、B【解析】
根據(jù)函數(shù)奇偶性,可排除D;求得及,由導函數(shù)符號可判斷在上單調遞增,即可排除AC選項.【詳解】函數(shù)易知為奇函數(shù),故排除D.又,易知當時,;又當時,,故在上單調遞增,所以,綜上,時,,即單調遞增.又為奇函數(shù),所以在上單調遞增,故排除A,C.故選:B【點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,導函數(shù)性質與函數(shù)圖象關系,屬于中檔題.4、D【解析】
由已知可將問題轉化為:y=f(x)的圖象和直線y=kx-有4個交點,作出圖象,由圖可得:點(1,0)必須在直線y=kx-的下方,即可求得:k>;再求得直線y=kx-和y=lnx相切時,k=;結合圖象即可得解.【詳解】若關于x的方程f(x)=kx-恰有4個不相等的實數(shù)根,則y=f(x)的圖象和直線y=kx-有4個交點.作出函數(shù)y=f(x)的圖象,如圖,故點(1,0)在直線y=kx-的下方.∴k×1->0,解得k>.當直線y=kx-和y=lnx相切時,設切點橫坐標為m,則k==,∴m=.此時,k==,f(x)的圖象和直線y=kx-有3個交點,不滿足條件,故所求k的取值范圍是,故選D..【點睛】本題主要考查了函數(shù)與方程思想及轉化能力,還考查了導數(shù)的幾何意義及計算能力、觀察能力,屬于難題.5、A【解析】
設為、的夾角,根據(jù)題意求得,然后建立平面直角坐標系,設,,,根據(jù)平面向量數(shù)量積的坐標運算得出點的軌跡方程,將和轉化為圓上的點到定點距離,利用數(shù)形結合思想可得出結果.【詳解】由已知可得,則,,,建立平面直角坐標系,設,,,由,可得,即,化簡得點的軌跡方程為,則,則轉化為圓上的點與點的距離,,,,轉化為圓上的點與點的距離,,.故選:A.【點睛】本題考查和向量與差向量模最值的求解,將向量坐標化,將問題轉化為圓上的點到定點距離的最值問題是解答的關鍵,考查化歸與轉化思想與數(shù)形結合思想的應用,屬于中等題.6、D【解析】
利用向量模的運算列方程,結合向量數(shù)量積的運算,求得實數(shù)的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數(shù)量積的運算,屬于基礎題.7、B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r8、B【解析】
利用換元法化簡解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質求得的取值范圍,由此求得的值域.【詳解】因為(),所以,令(),則(),函數(shù)的對稱軸方程為,所以,,所以,所以的值域為.故選:B【點睛】本小題考查函數(shù)的定義域與值域等基礎知識,考查學生分析問題,解決問題的能力,運算求解能力,轉化與化歸思想,換元思想,分類討論和應用意識.9、A【解析】
作交于點,根據(jù)向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結果.【詳解】如圖,作交于點,則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點睛】本題考查三角函數(shù)與向量的結合,三角形面積公式,屬基礎題,作出合適的輔助線是本題的關鍵.10、A【解析】
根據(jù)定義,表示出數(shù)列的通項并等于2020.結合的正整數(shù)性質即可確定解的個數(shù).【詳解】由題意可知首項為2,設第二項為,則第三項為,第四項為,第五項為第n項為且,則,因為,當?shù)闹悼梢詾椋患从?個這種超級斐波那契數(shù)列,故選:A.【點睛】本題考查了數(shù)列新定義的應用,注意自變量的取值范圍,對題意理解要準確,屬于中檔題.11、D【解析】
設出坐標,聯(lián)立直線方程與拋物線方程,利用弦長公式求得,再由點到直線的距離公式求得到的距離,得到的面積為,作差后利用導數(shù)求最值.【詳解】設,,聯(lián)立,得則,則由,得設,則,則點到直線的距離從而.令當時,;當時,故,即的最小值為本題正確選項:【點睛】本題考查直線與拋物線位置關系的應用,考查利用導數(shù)求最值的問題.解決圓錐曲線中的面積類最值問題,通常采用構造函數(shù)關系的方式,然后結合導數(shù)或者利用函數(shù)值域的方法來求解最值.12、D【解析】
由題可知,可轉化為曲線與有兩個公共點,可轉化為方程有兩解,構造函數(shù),利用導數(shù)研究函數(shù)單調性,分析即得解【詳解】函數(shù)的圖象上兩點,關于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當時,;當時,,故時取得極大值,也即為最大值,當時,;當時,,所以滿足條件.故選:D【點睛】本題考查了利用導數(shù)研究函數(shù)的零點,考查了學生綜合分析,轉化劃歸,數(shù)形結合,數(shù)學運算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
首先根據(jù)向量的數(shù)量積的運算律求出,再根據(jù)計算可得;【詳解】解:因為,所以又所以所以故答案為:【點睛】本題考查平面向量的數(shù)量積的運算,屬于基礎題.14、10【解析】
先求出a,b,根據(jù)分層抽樣的比例引入正整數(shù)k表示n,從而得出的最小值.【詳解】由題意得,a=0.2,b=80,由表可知,燈泡樣品第一組有40個,第二組有60個,第三組有80個,第四組有20個,所以四個組的比例為2:3:4:1,所以按分層抽樣法,購買的燈泡數(shù)為n=2k+3k+4k+k=10k(),所以的最小值為10.【點睛】本題考查分層抽樣基本原理的應用,涉及抽樣比、總體數(shù)量、每層樣本數(shù)量的計算,屬于基礎題.15、【解析】
根據(jù)數(shù)據(jù)先求出,再求出分鐘至少能做到個仰臥起坐的初三女生人數(shù)即可.【詳解】解:,.則分鐘至少能做到個仰臥起坐的初三女生人數(shù)為.故答案為:.【點睛】本題主要考查頻率分布直方圖,屬于基礎題.16、【解析】
結合圖形可以發(fā)現(xiàn),利用三角形中位線定理,將線段長度用坐標表示成圓的方程,與橢圓方程聯(lián)立可進一步求解.利用焦半徑及三角形中位線定理,則更為簡潔.【詳解】方法1:由題意可知,由中位線定理可得,設可得,聯(lián)立方程可解得(舍),點在橢圓上且在軸的上方,求得,所以方法2:焦半徑公式應用解析1:由題意可知,由中位線定理可得,即求得,所以.【點睛】本題主要考查橢圓的標準方程、橢圓的幾何性質、直線與圓的位置關系,利用數(shù)形結合思想,是解答解析幾何問題的重要途徑.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)當時,沒有極值點,當時,有一個極小值點.(2)【解析】試題分析:(1),分,討論,當時,對,,當時,解得,在上是減函數(shù),在上是增函數(shù)。所以,當時,沒有極值點,當時,有一個極小值點.(2)原命題為假命題,則逆否命題為真命題。即不等式在區(qū)間內有解。設,所以,設,則,且是增函數(shù),所以。所以分和k>1討論。試題解析:(Ⅰ)因為,所以,當時,對,,所以在是減函數(shù),此時函數(shù)不存在極值,所以函數(shù)沒有極值點;當時,,令,解得,若,則,所以在上是減函數(shù),若,則,所以在上是增函數(shù),當時,取得極小值為,函數(shù)有且僅有一個極小值點,所以當時,沒有極值點,當時,有一個極小值點.(Ⅱ)命題“,”是假命題,則“,”是真命題,即不等式在區(qū)間內有解.若,則設,所以,設,則,且是增函數(shù),所以當時,,所以在上是增函數(shù),,即,所以在上是增函數(shù),所以,即在上恒成立.當時,因為在是增函數(shù),因為,,所以在上存在唯一零點,當時,,在上單調遞減,從而,即,所以在上單調遞減,所以當時,,即.所以不等式在區(qū)間內有解綜上所述,實數(shù)的取值范圍為.18、(1);(2)20.【解析】
(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,即求概率;(2)的可能取值為:0,10,20,30,1.分別求出取各個值時的概率,即可求出分布列和數(shù)學期望.【詳解】(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,所以1名顧客摸球2次摸獎停止的概率.(2)的可能取值為:0,10,20,30,1.,∴隨機變量X的分布列為:X01020301P數(shù)學期望.【點睛】本題主要考查離散型隨機變量的分布列和數(shù)學期望,屬于中檔題.19、(1);(2)【解析】
(1)分類討論去絕對值號,即可求解;(2)原不等式可轉化為在R上恒成立,分別求函數(shù)與的最小值,根據(jù)能同時成立,可得的最小值,即可求解.【詳解】(1)①當時,不等式可化為,得,無解;②當-2≤x≤1時,不等式可化為得x>0,故0<x≤1;③當x>1時,不等式可化為,得x<2,故1<x<2.綜上,不等式的解集為(2)由題意知在R上恒成立,所以令,則當時,又當時,取得最小值,且又所以當時,與同時取得最小值.所以所以,即實數(shù)的取值范圍為【點睛】本題主要考查了含絕對值不等式的解法,分類討論,函數(shù)的最值,屬于中檔題.20、(1)時,在上單調遞增,時,在上遞減,在上遞增.(2).【解析】
(1)求出導函數(shù),分類討論,由確定增區(qū)間,由確定減區(qū)間;(2)由,利用(1)首先得或,求出的最小值即可得結論.【詳解】(1)函數(shù)定義域是,,當時,,單調遞增;時,令得,時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025汽車交易合同范本
- 2025版合同協(xié)議模板
- 路橋施工公司推土機租賃合同
- 木材板材購銷合同范本
- 個人借款還款合同范本
- 2025北京辦公室租賃合同范本
- 2025合伙型投資基金合同范本
- 廣播對接協(xié)議書范本
- 產權移交協(xié)議書范本
- 2025年03月浙江杭州市蕭山區(qū)事業(yè)單位招錄50人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 醫(yī)保業(yè)務培訓大綱
- 2025年中國短圓柱滾子軸承市場調查研究報告
- 教師的情緒管理課件
- 湖北省十一校2024-2025學年高三第二次聯(lián)考數(shù)學試卷(解析版)
- 英語-華大新高考聯(lián)盟2025屆高三3月教學質量測評試題+答案
- 《手工制作》課件-幼兒園掛飾
- 【初中地理】西亞+課件-2024-2025學年人教版地理七年級下冊
- 鼓勵員工發(fā)現(xiàn)安全隱患的獎勵制度
- 蘇教版一年級下冊數(shù)學全冊教學設計(配2025年春新版教材)
- 【特易資訊】2025中國二手車行業(yè)出口分析及各國進口政策影響白皮書
- (一診)2025年蘭州市高三診斷考試生物試卷(含官方答案)
評論
0/150
提交評論