廣西賀州平桂高級(jí)中學(xué)2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第1頁(yè)
廣西賀州平桂高級(jí)中學(xué)2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第2頁(yè)
廣西賀州平桂高級(jí)中學(xué)2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第3頁(yè)
廣西賀州平桂高級(jí)中學(xué)2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第4頁(yè)
廣西賀州平桂高級(jí)中學(xué)2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣西賀州平桂高級(jí)中學(xué)2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,是橢圓C的兩個(gè)焦點(diǎn),P是C上的一點(diǎn),若以為直徑的圓過(guò)點(diǎn)P,且,則C的離心率為()A. B.C. D.2.已知向量,且,則()A. B.C. D.3.若關(guān)于一元二次不等式的解集為,則實(shí)數(shù)的取值范圍是()A. B.C. D.4.?dāng)?shù)學(xué)家歐拉1765年在其所著的《三角形幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知△ABC的頂點(diǎn)分別為,,,則△ABC的歐拉線方程為()A. B.C. D.5.已知數(shù)列滿足:且,則此數(shù)列的前20項(xiàng)的和為()A.621 B.622C.1133 D.11346.已知點(diǎn)是橢圓上的任意點(diǎn),是橢圓的左焦點(diǎn),是的中點(diǎn),則的周長(zhǎng)為()A. B.C. D.7.如圖是正方體的平面展開圖,在這個(gè)正方體中①與平行;②與是異面直線;③與成60°角;④與是異面直線以上四個(gè)結(jié)論中,正確結(jié)論的序號(hào)是A.①②③ B.②④C.③④ D.②③④8.若方程表示焦點(diǎn)在y軸上的雙曲線,則實(shí)數(shù)m的取值范圍為()A. B.C. D.且9.已知空間直角坐標(biāo)系中的點(diǎn),,,則點(diǎn)P到直線AB的距離為()A. B.C. D.10.已知函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是()A.(-∞,0) B.C.(0,1) D.(0,+∞)11.執(zhí)行如圖所示的程序框圖,若輸出的,則輸人的()A. B.或C. D.或12.已知拋物線上一點(diǎn)M與焦點(diǎn)間的距離是3,則點(diǎn)M的縱坐標(biāo)為()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.若拋物線:上的一點(diǎn)到它的焦點(diǎn)的距離為3,則__.14.直線與直線平行,則m的值是__________15.設(shè)f(x)=xlnx,若f′(x0)=2,則x0=________16.過(guò)點(diǎn)且與直線垂直的直線方程為______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的上、下頂點(diǎn)分別為A,B,離心率為,橢圓C上的點(diǎn)與其右焦點(diǎn)F的最短距離為.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若直線與橢圓C交于P,Q兩點(diǎn),直線PA與QB的斜率分別為,,且,那么直線l是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出該定點(diǎn)坐標(biāo);否則,請(qǐng)說(shuō)明理由.18.(12分)已知圓,直線(1)證明直線與圓C一定有兩個(gè)交點(diǎn);(2)求直線與圓相交的最短弦長(zhǎng),并求對(duì)應(yīng)弦長(zhǎng)最短時(shí)的直線方程19.(12分)已知等比數(shù)列的前項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.20.(12分)如圖,在四棱錐S?ABCD中,已知四邊形ABCD是邊長(zhǎng)為的正方形,點(diǎn)S在底面ABCD上的射影為底面ABCD的中心點(diǎn)O,點(diǎn)P在棱SD上,且△SAC的面積為1(1)若點(diǎn)P是SD的中點(diǎn),求證:平面SCD⊥平面PAC;(2)在棱SD上是否存在一點(diǎn)P使得二面角P?AC?D的余弦值為?若存在,求出點(diǎn)P的位置;若不存在,說(shuō)明理由21.(12分)已知曲線C的方程為(1)判斷曲線C是什么曲線,并求其標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的直線l交曲線C于M,N兩點(diǎn),若點(diǎn)P為線段MN的中點(diǎn),求直線l的方程22.(10分)在中,已知,,,,分別為邊,的中點(diǎn),于點(diǎn).(1)求直線方程;(2)求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)題意,在中,設(shè),則,進(jìn)而根據(jù)橢圓定義得,進(jìn)而可得離心率.【詳解】在中,設(shè),則,又由橢圓定義可知?jiǎng)t離心率,故選:B.【點(diǎn)睛】本題考查橢圓離心率的計(jì)算,考查運(yùn)算求解能力,是基礎(chǔ)題.本題解題的關(guān)鍵在于根據(jù)已知條件,結(jié)合橢圓的定義,在焦點(diǎn)三角形中根據(jù)邊角關(guān)系求解.2、A【解析】利用空間向量共線的坐標(biāo)表示即可求解.【詳解】由題意可得,解得,所以.故選:A3、B【解析】結(jié)合判別式求得的取值范圍.【詳解】由于關(guān)于的一元二次不等式的解集為,所以,解得,所以實(shí)數(shù)的取值范圍是.故選:B4、A【解析】求出重心坐標(biāo),求出AB邊上高和AC邊上高所在直線方程,聯(lián)立兩直線可得垂心坐標(biāo),即可求出歐拉線方程.【詳解】由題可知,△ABC的重心為,可得直線AB的斜率為,則AB邊上高所在的直線斜率為,則方程為,直線AC的斜率為,則AC邊上高所在的直線斜率為2,則方程為,聯(lián)立方程可得△ABC的垂心為,則直線GH斜率為,則可得直線GH方程為,故△ABC的歐拉線方程為.故選:A.5、C【解析】這個(gè)數(shù)列的奇數(shù)項(xiàng)是公差為2的等差數(shù)列,偶數(shù)項(xiàng)是公比為2的等比數(shù)列,只要分開來(lái)計(jì)算即可.【詳解】由于,所以當(dāng)n為奇數(shù)時(shí),是等差數(shù)列,即:共10項(xiàng),和為;,共10項(xiàng),其和為;∴該數(shù)列前20項(xiàng)的和;故選:C.6、A【解析】設(shè)橢圓另一個(gè)焦點(diǎn)為,連接,利用中位線的性質(zhì)結(jié)合橢圓的定義可求得結(jié)果.【詳解】在橢圓中,,,,如圖,設(shè)橢圓的另一個(gè)焦點(diǎn)為,連接,因?yàn)?、分別為、的中點(diǎn),則,則的周長(zhǎng)為,故選:A.7、C【解析】根據(jù)平面展開圖可得原正方體,根據(jù)各點(diǎn)的分布逐項(xiàng)判斷可得正確的選項(xiàng).【詳解】由平面展開圖可得原正方體如圖所示:由圖可得:為異面直線,與不是異面直線,是異面直線,故①②錯(cuò)誤,④正確.連接,則為等邊三角形,而,故或其補(bǔ)角為與所成的角,因?yàn)?,故與所成的角為,故③正確.綜上,正確命題的序號(hào)為:③④.故選:C.【點(diǎn)睛】本題考查正方體的平面展開圖,注意展開圖中的點(diǎn)與正方體中的頂點(diǎn)的對(duì)應(yīng)關(guān)系,本題屬于容易題.8、A【解析】根據(jù)雙曲線定義,且焦點(diǎn)在y軸上,則可直接列出相關(guān)不等式.【詳解】若方程表示焦點(diǎn)在y軸上的雙曲線,則必有:,且解得:故選:9、D【解析】由向量在向量上的投影及勾股定理即可求.【詳解】,0,,,1,,,,,,在上的投影為,則點(diǎn)到直線的距離為.故選:D10、B【解析】函數(shù)f(x)=x(lnx﹣ax),則f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函數(shù)f(x)=x(lnx﹣ax)有兩個(gè)極值點(diǎn),等價(jià)于f′(x)=lnx﹣2ax+1有兩個(gè)零點(diǎn),等價(jià)于函數(shù)y=lnx與y=2ax﹣1的圖象有兩個(gè)交點(diǎn),在同一個(gè)坐標(biāo)系中作出它們的圖象(如圖)當(dāng)a=時(shí),直線y=2ax﹣1與y=lnx的圖象相切,由圖可知,當(dāng)0<a<時(shí),y=lnx與y=2ax﹣1的圖象有兩個(gè)交點(diǎn)則實(shí)數(shù)a的取值范圍是(0,)故選B11、A【解析】根據(jù)題意可知該程序框圖顯示的算法函數(shù)為,分和兩種情況討論即可得解.【詳解】解:該程序框圖顯示得算法函數(shù)為,由,當(dāng)時(shí),,方程無(wú)解;當(dāng)時(shí),,解得,綜上,若輸出的,則輸入的.故選:A.12、B【解析】利用拋物線的定義求解即可【詳解】拋物線的焦點(diǎn)為,準(zhǔn)線方程為,因?yàn)閽佄锞€上一點(diǎn)M與焦點(diǎn)間的距離是3,所以,得,即點(diǎn)M的縱坐標(biāo)為2,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】通過(guò)拋物線的定義列式求解【詳解】根據(jù)拋物線的定義知,所以.故答案為:14、【解析】利用直線的平行條件即得.詳解】∵直線與直線平行,∴,∴.故答案為:.15、【解析】f(x)=xlnx∴f'(x)=lnx+1則f′(x0)=lnx0+1=2解得:x0=e16、【解析】先設(shè)出與直線垂直的直線方程,再把代入進(jìn)行求解.【詳解】設(shè)與直線垂直的直線為,將代入得:,解得:,故所求直線方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)恒過(guò)點(diǎn)【解析】(1)設(shè)為橢圓上的點(diǎn),根據(jù)橢圓的性質(zhì)得到,再根據(jù)的取值范圍,得到,再根據(jù)離心率求出、,最后根據(jù),求出,即可得解;(2)設(shè)、,表示出、,聯(lián)立直線與橢圓方程,消元列出韋達(dá)定理,由,即可得到,再根據(jù),即可得到,從而得到,再將、代入計(jì)算可得;【小問(wèn)1詳解】解:設(shè)為橢圓上的點(diǎn),為橢圓的右焦點(diǎn),所以,因?yàn)?,所以,又,所以、,因?yàn)?,所以,所以橢圓方程為;【小問(wèn)2詳解】解:設(shè)、,依題意可得、,所以、,聯(lián)立得,則即,所以、,因?yàn)?,所以,即,由得,即,所以,即,,整理得,所以,即,即,解得或,?dāng)時(shí)直線過(guò)點(diǎn),故舍去,所以,則直線恒過(guò)點(diǎn);18、(1)證明見解析(2)答案見解析【解析】(1)由,變形為求解直線過(guò)的定點(diǎn),即可得解;(2)法一:由圓心和連線與直線垂直求解;法二:由圓心到直線距離最大時(shí)求解.【小問(wèn)1詳解】解:,所以,令,所以直線經(jīng)過(guò)定點(diǎn),圓可變形為,因?yàn)?,所以定點(diǎn)在圓內(nèi),所以直線和圓C相交,有兩個(gè)交點(diǎn);【小問(wèn)2詳解】法一:圓心為,到距離為,圓心與連線的斜率為,最短弦與圓心和的連線垂直,所以,所以最短弦長(zhǎng)為,直線的方程為法二:圓心到直線距離:,,要求d的最大值,則,當(dāng)且僅當(dāng)時(shí),d的最大值為,所以最短弦長(zhǎng)為,直線的方程為.19、(1)(2)【解析】(1)根據(jù)得到,再結(jié)合為等比數(shù)列求出首項(xiàng),進(jìn)而求得數(shù)列的通項(xiàng)公式;(2)由(1)求得數(shù)列的通項(xiàng)公式,進(jìn)而利用公式法即可求出【小問(wèn)1詳解】解:(1),,當(dāng)時(shí),,即,又,為等比數(shù)列,所以,,數(shù)列的通項(xiàng)公式為【小問(wèn)2詳解】(2)由(1)知,則,數(shù)列的前項(xiàng)和20、(1)證明見解析(2)存在,點(diǎn)P為棱SD靠近點(diǎn)D的三等分點(diǎn)【解析】(1)由的面積為1,得到,,由,點(diǎn)P為SD的中點(diǎn),所以,同理可得,根據(jù)線面垂直的判斷定理可得平面PAC,再由面面垂直的判斷定理可得答案;(2)存在,分別以O(shè)B,OC,OS所在直線為x,y,z軸,建立空間直角坐標(biāo)系,假設(shè)在棱SD上存在點(diǎn)P,設(shè),求出平面PAC、平面ACD的一個(gè)法向量,由二面角的向量法可得答案.【小問(wèn)1詳解】因?yàn)辄c(diǎn)S在底面ABCD上的射影為O,所以平面ABCD,因?yàn)樗倪呅蜛BCD是邊長(zhǎng)為的正方形,所以,又因?yàn)榈拿娣e為1,所以,,所以,因?yàn)?,點(diǎn)P為SD的中點(diǎn),所以,同理可得,因?yàn)?,AP,平面PAC,所以平面PAC,又平面SCD,∴平面平面PAC【小問(wèn)2詳解】存在,連接,由平面ABCD,平面ABCD,平面ABCD,又,可得兩兩垂直,分別以所在直線為x,y,z軸,建立空間直角坐標(biāo)系,如圖,則,,,,假設(shè)在棱SD上存在點(diǎn)P使二面角的余弦值為,設(shè),,,所以,,設(shè)平面PAC的一個(gè)法向量為,則,因?yàn)椋?,所以,令,得,,因?yàn)槠矫鍭CD的一個(gè)法向量為,所以,化簡(jiǎn)得,解得或(舍),所以存在P點(diǎn)符合題意,點(diǎn)P為棱SD靠近點(diǎn)D的三等分點(diǎn)21、(1);(2).【解析】(1)根據(jù)橢圓的定義即可判斷并求解;(2)根據(jù)點(diǎn)差法即可求解中點(diǎn)弦斜率和中點(diǎn)弦方程.【小問(wèn)1詳解】設(shè),,E(x,y),∵,,且,點(diǎn)的軌跡是以,為焦點(diǎn),長(zhǎng)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論