




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆重慶市六校聯(lián)考高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列中,其前項和為,且滿足,數(shù)列的前項和為,若對恒成立,則實數(shù)的值可以是()A. B.2C.3 D.2.已知雙曲線上的點到的距離為15,則點到點的距離為()A.7 B.23C.5或25 D.7或233.下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則4.已知直線,兩個不同的平面,,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則5.向量,向量,若,則實數(shù)()A. B.1C. D.6.設(shè)是定義在R上的可導(dǎo)函數(shù),若(為常數(shù)),則()A. B.C. D.7.若拋物線x=﹣my2的焦點到準線的距離為2,則m=()A.﹣4 B.C. D.±8.已知E、F分別為橢圓的左、右焦點,傾斜角為的直線l過點E,且與橢圓交于A,B兩點,則的周長為A.10 B.12C.16 D.209.已知雙曲線的右焦點為,以為圓心,以為半徑的圓與雙曲線的一條漸近線交于,兩點,若(為坐標原點),則雙曲線的離心率為().A. B.C. D.10.設(shè)曲線在點處的切線與x軸、y軸分別交于A,B兩點,O為坐標原點,則的面積等于()A.1 B.2C.4 D.611.執(zhí)行如圖的程序框圖,輸出的S的值為()A. B.0C.1 D.212.過點且與直線平行的直線方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.有一道樓梯共10階,小王同學(xué)要登上這道樓梯,登樓梯時每步隨機選擇一步一階或一步兩階,小王同學(xué)7步登完樓梯的概率為___________.14.已知、是橢圓的兩個焦點,點在橢圓上,且,,則橢圓離心率是___________15.寫出一個離心率且焦點在軸上的雙曲線的標準方程________,并寫出該雙曲線的漸近線方程________16.必然事件的概率是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(I)若曲線在點處的切線方程為,求的值;(II)若,求的單調(diào)區(qū)間.18.(12分)已知點,橢圓:的離心率為,是橢圓的右焦點,直線的斜率為,為坐標原點.設(shè)過點的動直線與相交于,兩點(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請說明理由19.(12分)我們知道,裝同樣體積的液體容器中,如果容器的高度一樣,那么側(cè)面所需的材料就以圓柱形的容器最省.所以汽油桶等裝液體的容器大都是圓柱形的,某臥式油罐如圖1所示,它垂直于軸的截面如圖2所示,已知截面圓的半徑是1米,弧的長為米表示劣弧與弦所圍成陰影部分的面積.(1)請寫出函數(shù)表達式;(2)用求導(dǎo)的方法證明.20.(12分)已知的離心率為,短軸長為2,F(xiàn)為右焦點(1)求橢圓的方程;(2)在x軸上是否存在一點M,使得過F的任意一條直線l與橢圓的兩個交點A,B,恒有,若存在求出M的坐標,若不存在,說明理由21.(12分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)求函數(shù)在區(qū)間上的最大值與最小值.22.(10分)如圖,在三棱錐中,平面平面,,都是等腰直角三角形,,,,分別為,的中點.(1)求證:平面;(2)求證:平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由求出,從而可以求,再根據(jù)已知條件不等式恒成立,可以進行適當(dāng)放大即可.【詳解】若n=1,則,故;若,則由得,故,所以,,又因為對恒成立,當(dāng)時,則恒成立,當(dāng)時,,所以,,,若n為奇數(shù),則;若n為偶數(shù),則,所以所以,對恒成立,必須滿足.故選:D2、D【解析】根據(jù)雙曲線的定義知,,即可求解.【詳解】由題意,雙曲線,可得焦點坐標,根據(jù)雙曲線的定義知,,而,所以或故選:D【點睛】本題主要考查了雙曲線的定義及其應(yīng)用,其中解答中熟記雙曲線的定義,列出方程是解答的關(guān)鍵,著重考查推理與運算能力,屬于基礎(chǔ)題.3、D【解析】通過舉反列即可得ABC錯誤,利用不等式性質(zhì)可判斷D【詳解】A.當(dāng)時,,但,故A錯;B.當(dāng)時,,故B錯;C.當(dāng)時,,但,故C錯;D.若,則,D正確故選:D4、C【解析】對于A,可能在內(nèi),故可判斷A;對于B,可能相交,故可判斷B;對于C,根據(jù)線面垂直的判定定理,可判定C;對于D,和可能平行,或斜交或在內(nèi),故可判斷D.【詳解】對于A,除了外,還有可能在內(nèi),故可判斷A錯誤;對于B,,那么可能相交,故可判斷B錯誤;對于C,根據(jù)線面平行的性質(zhì)定理可知,在內(nèi)一定存在和平行的直線,那么該直線也垂直于,所以,故判定C正確;對于D,,,則和可能平行,或斜交或在內(nèi),故可判D.錯誤,故選:C.5、C【解析】由空間向量垂直的坐標表示列方程即可求解.【詳解】因為向量,向量,若,則,解得:,故選:C.6、C【解析】根據(jù)導(dǎo)數(shù)的定義即可求解.【詳解】.故選:C.7、D【解析】把拋物線的方程化為標準方程,由焦點到準線的距離為,即可得到結(jié)果,得到答案.【詳解】由題意,拋物線,可得,又由拋物線的焦點到準線的距離為2,即,解得.故選D.【點睛】本題主要考查了拋物線的標準方程,以及簡單的幾何性質(zhì)的應(yīng)用,其中解答中熟記拋物線的焦點到準線的距離為是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.8、D【解析】利用橢圓的定義即可得到結(jié)果【詳解】橢圓,可得,三角形的周長,,所以:周長,由橢圓的第一定義,,所以,周長故選D【點睛】本題考查橢圓簡單性質(zhì)的應(yīng)用,橢圓的定義的應(yīng)用,三角形的周長的求法,屬于基本知識的考查9、A【解析】設(shè)雙曲線的一條漸近線方程為,為的中點,可得,由,可知為的三等分點,用兩種方式表示,可得關(guān)于的方程組,結(jié)合即可得到雙曲線的離心率.【詳解】設(shè)雙曲線的一條漸近線方程為,為的中點,可得,由到漸近線的距離為,所以,又,所以,因為,所以,整理可得:,即,所以,可得,所以,所以雙曲線的離心率為,故選:A.10、C【解析】求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)在處的導(dǎo)數(shù)值,寫出切線方程,分別求得切線在兩坐標軸上的坐標,再由三角形面積公式求解【詳解】由,得,,又切線過點,曲線在點處的切線方程為,取,得,取,得的面積等于故選:C11、A【解析】直接求出的值即可.【詳解】解:由題得,程序框圖就是求,由于三角函數(shù)的最小正周期為,,,所以.故選:A12、A【解析】由題意設(shè)直線方程為,根據(jù)點在直線上求參數(shù)即可得方程.【詳解】由題設(shè),令直線方程為,所以,可得.所以直線方程為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可分為步、步、步、步、步、步共6種情況,分別求出每種的基本事件數(shù),再利用古典概型的概率公式計算可得;【詳解】解:由題意可分為步、步、步、步、步、步共6種情況,①步:即步兩階,有種;②步:即步兩階與步一階,有種;③步:即步兩階與步一階,有種;④步:即步兩階與步一階,有種;⑤步:即步兩階與步一階,有種;⑥步:即步一階,有種;綜上可得一共有種情況,滿足7步登完樓梯的有種;故7步登完樓梯的概率為故答案為:14、【解析】先由,根據(jù)橢圓的定義,求出,,再由余弦定理,根據(jù),即可列式求出離心率.【詳解】因為點在橢圓上,所以,又,所以,因,在中,由,根據(jù)余弦定理可得,解得(負值舍去)故答案為:.【點睛】本題主要考查求橢圓的離心率,屬于??碱}型.15、①.(答案不唯一)②.(答案不唯一)【解析】令雙曲線為,根據(jù)離心率可得,結(jié)合雙曲線參數(shù)關(guān)系寫出一個符合要求的雙曲線方程,進而寫出對應(yīng)的漸近線方程.【詳解】由題設(shè),可令雙曲線為且,∴,則,故為其中一個標準方程,此時漸近線方程為.故答案為:,(答案不唯一).16、1【解析】直接由必然事件的定義求解【詳解】因為必然事件是一定要發(fā)生的,所以必然事件的概率是1,故答案為:1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減【解析】(Ⅰ)求出函數(shù)的導(dǎo)函數(shù),根據(jù)題意可得得到關(guān)于的方程組,解得;(Ⅱ)求出函數(shù)的導(dǎo)函數(shù),解得函數(shù)的單調(diào)遞增區(qū)間,解得函數(shù)的單調(diào)遞減區(qū)間.【詳解】解:(Ⅰ)因為函數(shù)在點處的切線方程為解得(Ⅱ)令,得或.因為,所以時,;時,.故在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減【點睛】本題考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.18、(1);(2)存在;或.【解析】(1)設(shè),由,,,求得的值即可得橢圓的方程;(2)設(shè),,直線的方程為與橢圓方程聯(lián)立可得,,進而可得弦長,求出點到直線的距離,解方程,求得的值即可求解.【小問1詳解】設(shè),因為直線的斜率為,,所以,可得,又因為,所以,所以,所以橢圓的方程為【小問2詳解】假設(shè)存在直線,使得的面積為,當(dāng)軸時,不合題意,設(shè),,直線的方程為,聯(lián)立消去得:,由可得或,,,所以,點到直線的距離,所以,整理可得:即,所以或,所以或,所以存在直線:或使得的面積為.19、(1),(2)證明見解析【解析】(1)由弧長公式得,根據(jù)即可求解;(2)利用導(dǎo)數(shù)判斷出在上單調(diào)遞增,即可證明.【小問1詳解】由弧長公式得,于是,【小問2詳解】cos,顯然在上單調(diào)遞增,于是.20、(1);(2)存在點M滿足條件,點M的坐標為.【解析】(1)根據(jù)給定條件直接計算出即可求解作答.(2)假定存在點,當(dāng)直線l與x軸不重合時,設(shè)出l的方程,與橢圓C的方程聯(lián)立,借助、斜率互為相反數(shù)計算得解,再驗證直線l與x軸重合的情況即可作答.【小問1詳解】依題意,,而離心率,即,解得,所以橢圓C的方程為:.【小問2詳解】由(1)知,,假定存在點滿足條件,當(dāng)直線與x軸不重合時,設(shè)l的方程為:,由消去x并整理得:,設(shè),則有,因,則直線、斜率互為相反數(shù),于是得:,整理得,即,則有,即,而m為任意實數(shù),則,當(dāng)直線l與x軸重合時,點A,B為橢圓長軸的兩個端點,點也滿足,所以存在點M滿足條件,點M的坐標為.【點睛】思路點睛:解答直線與橢圓相交的問題,常把直線與橢圓的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系.21、(1)(2),【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義即可求解;(2)根據(jù)導(dǎo)數(shù)的正負判斷f(x)的單調(diào)性,根據(jù)其單調(diào)性即可求最大值和最小值.【小問1詳解】,切點為(1,-2),∵,∴切線斜率,切線方程為;【小問2詳解】令,解得,1200極大值極小值2∵,,∴當(dāng)時,,.22、(1)證明見解析(2)證明見解析【解析】(1)由三角形的中位線定理可證得MN∥AB,再由線面垂直的判定定理可證得結(jié)論,(2)由已知可得AB⊥BC,VC⊥A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)合作垃圾協(xié)議書
- 自助早餐協(xié)議書范本
- 限產(chǎn)限電協(xié)議書范本
- 試驗推廣協(xié)議書范本
- 物業(yè)合作賣房協(xié)議書
- 終止經(jīng)營關(guān)系協(xié)議書
- 美發(fā)員工約束協(xié)議書
- 就業(yè)保障協(xié)議書培訓(xùn)
- 農(nóng)場股份贈與協(xié)議書
- 審查增資擴股協(xié)議書
- 《民航危險品運輸》教學(xué)課件 第一章 民航危險品運輸概述
- 四川省邛崍市天府現(xiàn)代種業(yè)園管理委員會面向社會公開招考9名員額制社會化專業(yè)人才(共200題含答案解析)模擬檢測(自我提高)試卷-1
- 倫理學(xué)考試題庫及答案
- 《路德維希 費爾巴哈和德國古典哲學(xué)的終結(jié)》
- 抽油井檢泵作業(yè)課件
- 2022年06月2022年廣東肇慶廣寧縣司法局招考聘用政府雇員名師點撥卷V答案詳解版(3套版)
- 《HSK標準教程3》第5課課件
- HSK標準教程4上第1課課件
- 民俗學(xué)概論 第一章 概述課件
- 干粉滅火器點檢記錄表(樣表)
- 伍光和自然地理學(xué)4版知識點總結(jié)課后答案
評論
0/150
提交評論