版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省寶雞渭濱區(qū)四校聯(lián)考2023-2024學年中考數(shù)學模擬預測題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.設x1,x2是一元二次方程x2﹣2x﹣3=0的兩根,則x12+x22=()A.6B.8C.10D.122.如圖,將△OAB繞O點逆時針旋轉60°得到△OCD,若OA=4,∠AOB=35°,則下列結論錯誤的是()A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=43.近兩年,中國倡導的“一帶一路”為沿線國家創(chuàng)造了約180000個就業(yè)崗位,將180000用科學記數(shù)法表示為()A.1.8×105 B.1.8×104 C.0.18×106 D.18×1044.如圖,一個可以自由轉動的轉盤被等分成6個扇形區(qū)域,并涂上了相應的顏色,轉動轉盤,轉盤停止后,指針指向藍色區(qū)域的概率是()A. B.C. D.5.下列事件中,屬于不確定事件的是()A.科學實驗,前100次實驗都失敗了,第101次實驗會成功B.投擲一枚骰子,朝上面出現(xiàn)的點數(shù)是7點C.太陽從西邊升起來了D.用長度分別是3cm,4cm,5cm的細木條首尾順次相連可組成一個直角三角形6.有四包真空包裝的火腿腸,每包以標準質量450g為基準,超過的克數(shù)記作正數(shù),不足的克數(shù)記作負數(shù).下面的數(shù)據是記錄結果,其中與標準質量最接近的是()A.+2 B.﹣3 C.+4 D.﹣17.如圖,已知?ABCD中,E是邊AD的中點,BE交對角線AC于點F,那么S△AFE:S四邊形FCDE為()A.1:3 B.1:4 C.1:5 D.1:68.計算2a2+3a2的結果是()A.5a4 B.6a2 C.6a4 D.5a29.下列幾何體是棱錐的是()A. B. C. D.10.據財政部網站消息,2018年中央財政困難群眾救濟補助預算指標約為929億元,數(shù)據929億元科學記數(shù)法表示為()A.9.29×109 B.9.29×1010 C.92.9×1010 D.9.29×1011二、填空題(本大題共6個小題,每小題3分,共18分)11.數(shù)學的美無處不在.數(shù)學家們研究發(fā)現(xiàn),彈撥琴弦發(fā)出聲音的音調高低,取決于弦的長度,繃得一樣緊的幾根弦,如果長度的比能夠表示成整數(shù)的比,發(fā)出的聲音就比較和諧.例如,三根弦長度之比是15:12:10,把它們繃得一樣緊,用同樣的力彈撥,它們將分別發(fā)出很調和的樂聲do、mi、so,研究15、12、10這三個數(shù)的倒數(shù)發(fā)現(xiàn):.我們稱15、12、10這三個數(shù)為一組調和數(shù).現(xiàn)有一組調和數(shù):x,5,3(x>5),則x的值是.12.在?ABCD中,AB=3,BC=4,當?ABCD的面積最大時,下列結論:①AC=5;②∠A+∠C=180o;③AC⊥BD;④AC=BD.其中正確的有_________.(填序號)13.若反比例函數(shù)的圖象與一次函數(shù)y=ax+b的圖象交于點A(﹣2,m)、B(5,n),則3a+b的值等于_____.14.一個n邊形的內角和為1080°,則n=________.15.如圖,已知AB∥CD,F(xiàn)為CD上一點,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.16.把小圓形場地的半徑增加5米得到大圓形場地,此時大圓形場地的面積是小圓形場地的4倍,設小圓形場地的半徑為x米,若要求出未知數(shù)x,則應列出方程(列出方程,不要求解方程).三、解答題(共8題,共72分)17.(8分)如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,BC=6,ADBD=218.(8分)某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2018年春節(jié)期間旅游情況統(tǒng)計圖(如圖),根據圖中信息解答下列問題:(1)2018年春節(jié)期間,該市A、B、C、D、E這五個景點共接待游客人數(shù)為多少?(2)扇形統(tǒng)計圖中E景點所對應的圓心角的度數(shù)是,并補全條形統(tǒng)計圖.(3)甲,乙兩個旅行團在A、B、D三個景點中隨機選擇一個,求這兩個旅行團選中同一景點的概率.19.(8分)某市A,B兩個蔬菜基地得知四川C,D兩個災民安置點分別急需蔬菜240t和260t的消息后,決定調運蔬菜支援災區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調運C,D兩個災區(qū)安置點.從A地運往C,D兩處的費用分別為每噸20元和25元,從B地運往C,D兩處的費用分別為每噸15元和18元.設從B地運往C處的蔬菜為x噸.請?zhí)顚懴卤?,并求兩個蔬菜基地調運蔬菜的運費相等時x的值;CD總計/tA200Bx300總計/t240260500(2)設A,B兩個蔬菜基地的總運費為w元,求出w與x之間的函數(shù)關系式,并求總運費最小的調運方案;經過搶修,從B地到C處的路況得到進一步改善,縮短了運輸時間,運費每噸減少m元(m>0),其余線路的運費不變,試討論總運費最小的調動方案.20.(8分)如圖,在平面直角坐標系中,拋物線的圖象經過和兩點,且與軸交于,直線是拋物線的對稱軸,過點的直線與直線相交于點,且點在第一象限.(1)求該拋物線的解析式;(2)若直線和直線、軸圍成的三角形面積為6,求此直線的解析式;(3)點在拋物線的對稱軸上,與直線和軸都相切,求點的坐標.21.(8分)如圖,AB是⊙O的直徑,CD切⊙O于點D,且BD∥OC,連接AC.(1)求證:AC是⊙O的切線;(2)若AB=OC=4,求圖中陰影部分的面積(結果保留根號和π)22.(10分)(2017江蘇省常州市)為了解某校學生的課余興趣愛好情況,某調查小組設計了“閱讀”、“打球”、“書法”和“其他”四個選項,用隨機抽樣的方法調查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據調查結果繪制了如下統(tǒng)計圖:根據統(tǒng)計圖所提供的信息,解答下列問題:(1)本次抽樣調查中的樣本容量是;(2)補全條形統(tǒng)計圖;(3)該校共有2000名學生,請根據統(tǒng)計結果估計該校課余興趣愛好為“打球”的學生人數(shù).23.(12分)已知開口向下的拋物線y=ax2-2ax+2與y軸的交點為A,頂點為B,對稱軸與x軸的交點為C,點A與點D關于對稱軸對稱,直線BD與x軸交于點M,直線AB與直線OD交于點N.(1)求點D的坐標.(2)求點M的坐標(用含a的代數(shù)式表示).(3)當點N在第一象限,且∠OMB=∠ONA時,求a的值.24.在一次數(shù)學活動課上,老師讓同學們到操場上測量旗桿的高度,然后回來交流各自的測量方法.小芳的測量方法是:拿一根高3.5米的竹竿直立在離旗桿27米的C處(如圖),然后沿BC方向走到D處,這時目測旗桿頂部A與竹竿頂部E恰好在同一直線上,又測得C、D兩點的距離為3米,小芳的目高為1.5米,這樣便可知道旗桿的高.你認為這種測量方法是否可行?請說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:根據根與系數(shù)的關系得到x1+x2=2,x1?x2=﹣3,再變形x12+x22得到(x1+x2)2﹣2x1?x2,然后利用代入計算即可.解:∵一元二次方程x2﹣2x﹣3=0的兩根是x1、x2,∴x1+x2=2,x1?x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1?x2=22﹣2×(﹣3)=1.故選C.2、D【解析】
由△OAB繞O點逆時針旋轉60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,據此可判斷C;由△AOC、△BOD是等邊三角形可判斷A選項;由∠AOB=35°,∠AOC=60°可判斷B選項,據此可得答案.【詳解】解:∵△OAB繞O點逆時針旋轉60°得到△OCD,
∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C選項正確;
則△AOC、△BOD是等邊三角形,∴∠BDO=60°,故A選項正確;
∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B選項正確.
故選D.【點睛】本題考查旋轉的性質,解題的關鍵是掌握旋轉的性質:①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等及等邊三角形的判定和性質.3、A【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】180000=1.8×105,故選A.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.4、B【解析】試題解析:∵轉盤被等分成6個扇形區(qū)域,而黃色區(qū)域占其中的一個,∴指針指向黃色區(qū)域的概率=.故選A.考點:幾何概率.5、A【解析】
根據事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】解:A、是隨機事件,故A符合題意;B、是不可能事件,故B不符合題意;C、是不可能事件,故C不符合題意;D、是必然事件,故D不符合題意;故選A.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.6、D【解析】試題解析:因為|+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以從輕重的角度看,質量是-1的工件最接近標準工件.故選D.7、C【解析】
根據AE∥BC,E為AD中點,找到AF與FC的比,則可知△AEF面積與△FCE面積的比,同時因為△DEC面積=△AEC面積,則可知四邊形FCDE面積與△AEF面積之間的關系.【詳解】解:連接CE,∵AE∥BC,E為AD中點,
∴.
∴△FEC面積是△AEF面積的2倍.
設△AEF面積為x,則△AEC面積為3x,
∵E為AD中點,
∴△DEC面積=△AEC面積=3x.
∴四邊形FCDE面積為1x,
所以S△AFE:S四邊形FCDE為1:1.
故選:C.【點睛】本題考查相似三角形的判定和性質、平行四邊形的性質,解題關鍵是通過線段的比得到三角形面積的關系.8、D【解析】
直接合并同類項,合并同類項時,把同類項的系數(shù)相加,所得和作為合并后的系數(shù),字母和字母的指數(shù)不變.【詳解】2a2+3a2=5a2.故選D.【點睛】本題考查了利用同類項的定義及合并同類項,熟練掌握合并同類項的方法是解答本題的關鍵.所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項;合并同類項時,把同類項的系數(shù)相加,所得和作為合并后的系數(shù),字母和字母的指數(shù)不變.9、D【解析】分析:根據棱錐的概念判斷即可.A是三棱柱,錯誤;B是圓柱,錯誤;C是圓錐,錯誤;D是四棱錐,正確.故選D.點睛:本題考查了立體圖形的識別,關鍵是根據棱錐的概念判斷.10、B【解析】
科學記數(shù)法的表示形式為a×1n的形式,其中1≤|a|<1,n為整數(shù).確定n的值是易錯點,由于929億有11位,所以可以確定n=11-1=1.【詳解】解:929億=92900000000=9.29×11.故選B.【點睛】此題考查科學記數(shù)法表示較大的數(shù)的方法,準確確定a與n值是關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】依據調和數(shù)的意義,有-=-,解得x=1.12、①②④【解析】
由當?ABCD的面積最大時,AB⊥BC,可判定?ABCD是矩形,由矩形的性質,可得②④正確,③錯誤,又由勾股定理求得AC=1.【詳解】∵當?ABCD的面積最大時,AB⊥BC,∴?ABCD是矩形,
∴∠A=∠C=90°,AC=BD,故③錯誤,④正確;∴∠A+∠C=180°;故②正確;∴AC=AB故答案為:①②④.【點睛】此題考查了平行四邊形的性質、矩形的判定與性質以及勾股定理.注意證得?ABCD是矩形是解此題的關鍵.13、0【解析】分析:本題直接把點的坐標代入解析式求得之間的關系式,通過等量代換可得到的值.詳解:分別把A(?2,m)、B(5,n),代入反比例函數(shù)的圖象與一次函數(shù)y=ax+b得?2m=5n,?2a+b=m,5a+b=n,綜合可知5(5a+b)=?2(?2a+b),25a+5b=4a?2b,21a+7b=0,即3a+b=0.故答案為:0.點睛:屬于一次函數(shù)和反比例函數(shù)的綜合題,考查反比例函數(shù)與一次函數(shù)的交點問題,比較基礎.14、1【解析】
直接根據內角和公式計算即可求解.【詳解】(n﹣2)?110°=1010°,解得n=1.故答案為1.【點睛】主要考查了多邊形的內角和公式.多邊形內角和公式:.15、36°或37°.【解析】分析:先過E作EG∥AB,根據平行線的性質可得∠AEF=∠BAE+∠DFE,再設∠CEF=x,則∠AEC=2x,根據6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,進而得到∠C的度數(shù).詳解:如圖,過E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,設∠CEF=x,則∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度數(shù)為整數(shù),∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案為:36°或37°.點睛:本題主要考查了平行線的性質以及三角形外角性質的運用,解決問題的關鍵是作平行線,解題時注意:兩直線平行,內錯角相等.16、π(x+5)1=4πx1.【解析】
根據等量關系“大圓的面積=4×小圓的面積”可以列出方程.【詳解】解:設小圓的半徑為x米,則大圓的半徑為(x+5)米,根據題意得:π(x+5)1=4πx1,故答案為π(x+5)1=4πx1.【點睛】本題考查了由實際問題抽象出一元二次方程的知識,本題等量關系比較明顯,容易列出.三、解答題(共8題,共72分)17、(1)證明見解析;(2)BE=5【解析】試題分析:連接OD.根據圓周角定理得到∠ADO+∠ODB=90°,而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以證明是切線.(2)根據已知條件得到△CDA∽△CBD由相似三角形的性質得到CDBD=ADBD.試題解析:(1)連接OD.∵OB=OD,∴∠OBD=∠BDO.∵∠CDA=∠CBD,∴∠CDA=∠ODB.又∵AB是⊙O的直徑,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD.∵OD是⊙O的半徑,∴CD是⊙O的切線;(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,CD∵ADBD=2∵CE,BE是⊙O的切線,∴BE=DE,BE⊥BC,∴BE2+BC2=EC2,即BE2+62=(4+BE)2,解得BE=.18、(1)50萬人;(2)43.2°;統(tǒng)計圖見解析(3).【解析】
(1)根據A景點的人數(shù)以及百分比進行計算即可得到該市景點共接待游客數(shù);(2)先用360°乘以E的百分比求得E景點所對應的圓心角的度數(shù),再根據B、D景點接待游客數(shù)補全條形統(tǒng)計圖;(3)根據甲、乙兩個旅行團在A、B、D三個景點中各選擇一個景點,畫出樹狀圖,根據概率公式進行計算,即可得到同時選擇去同一景點的概率.【詳解】解:(1)該市景點共接待游客數(shù)為:15÷30%=50(萬人);(2)扇形統(tǒng)計圖中E景點所對應的圓心角的度數(shù)是:×360°=43.2°,B景點的人數(shù)為50×24%=12(萬人)、D景點的人數(shù)為50×18%=9(萬人),補全條形統(tǒng)計圖如下:故答案為43.2°;(3)畫樹狀圖可得:∵共有9種可能出現(xiàn)的結果,這些結果出現(xiàn)的可能性相等,其中同時選擇去同一個景點的結果有3種,∴P(同時選擇去同一個景點)【點睛】本題考查的是統(tǒng)計以及用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.19、(1)見解析;(2)w=2x+9200,方案見解析;(3)0<m<2時,(2)中調運方案總運費最??;m=2時,在40?x?240的前提下調運方案的總運費不變;2<m<15時,x=240總運費最小.【解析】
(1)根據題意可得解.(2)w與x之間的函數(shù)關系式為:w=20(240?x)+25(x?40)+15x+18(300?x);列不等式組解出40≤x≤240,可由w隨x的增大而增大,得出總運費最小的調運方案.(3)根據題意得出w與x之間的函數(shù)關系式,然后根據m的取值范圍不同分別分析得出總運費最小的調運方案.【詳解】解:(1)填表:依題意得:20(240?x)+25(x?40)=15x+18(300?x).解得:x=200.(2)w與x之間的函數(shù)關系為:w=20(240?x)+25(x?40)+15x+18(300?x)=2x+9200.依題意得:∴40?x?240在w=2x+9200中,∵2>0,∴w隨x的增大而增大,故當x=40時,總運費最小,此時調運方案為如表.(3)由題意知w=20(240?x)+25(x?40)+(15-m)x+18(300?x)=(2?m)x+9200∴0<m<2時,(2)中調運方案總運費最小;m=2時,在40?x?240的前提下調運方案的總運費不變;2<m<15時,x=240總運費最小,其調運方案如表二.【點睛】此題考查一次函數(shù)的應用,解題關鍵在于根據題意列出w與x之間的函數(shù)關系式,并注意分類討論思想的應用.20、(1);(2);(3)或.【解析】
(1)根據圖象經過M(1,0)和N(3,0)兩點,且與y軸交于D(0,3),可利用待定系數(shù)法求出二次函數(shù)解析式;
(2)根據直線AB與拋物線的對稱軸和x軸圍成的三角形面積為6,得出AC,BC的長,得出B點的坐標,即可利用待定系數(shù)法求出一次函數(shù)解析式;
(3)利用三角形相似求出△ABC∽△PBF,即可求出圓的半徑,即可得出P點的坐標.【詳解】(1)拋物線的圖象經過,,,把,,代入得:解得:,拋物線解析式為;(2)拋物線改寫成頂點式為,拋物線對稱軸為直線,∴對稱軸與軸的交點C的坐標為,,設點B的坐標為,,則,,∴∴點B的坐標為,設直線解析式為:,把,代入得:,解得:,直線解析式為:.(3)①∵當點P在拋物線的對稱軸上,⊙P與直線AB和x軸都相切,
設⊙P與AB相切于點F,與x軸相切于點C,如圖1;
∴PF⊥AB,AF=AC,PF=PC,
∵AC=1+2=3,BC=4,
∴AB==5,AF=3,
∴BF=2,
∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,∴,∴,解得:,∴點P的坐標為(2,);②設⊙P與AB相切于點F,與軸相切于點C,如圖2:∴PF⊥AB,PF=PC,
∵AC=3,BC=4,AB=5,∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,∴,∴,解得:,∴點P的坐標為(2,-6),綜上所述,與直線和都相切時,或.【點睛】本題考查了二次函數(shù)綜合題,涉及到用待定系數(shù)法求一函數(shù)的解析式、二次函數(shù)的解析式及相似三角形的判定和性質、切線的判定和性質,根據題意畫出圖形,利用數(shù)形結合求解是解答此題的關鍵.21、(1)證明見解析;(2);【解析】
(1)連接OD,先根據切線的性質得到∠CDO=90°,再根據平行線的性質得到∠AOC=∠OBD,∠COD=∠ODB,又因為OB=OD,所以∠OBD=∠ODB,即∠AOC=∠COD,再根據全等三角形的判定與性質得到∠CAO=∠CDO=90°,根據切線的判定即可得證;(2)因為AB=OC=4,OB=OD,Rt△ODC與Rt△OAC是含30°的直角三角形,從而得到∠DOB=60°,即△BOD為等邊三角形,再用扇形的面積減去△BOD的面積即可.【詳解】(1)證明:連接OD,∵CD與圓O相切,∴OD⊥CD,∴∠CDO=90°,∵BD∥OC,∴∠AOC=∠OBD,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠AOC=∠COD,在△AOC和△DOC中,,∴△AOC≌△EOC(SAS),∴∠CAO=∠CDO=90°,則AC與圓O相切;(2)∵AB=OC=4,OB=OD,∴Rt△ODC與Rt△OAC是含30°的直角三角形,∴∠DOC=∠COA=60°,∴∠DOB=60°,∴△BOD為等邊三角形,圖中陰影部分的面積=扇形DOB的面積﹣△DOB的面積,=.【點睛】本題主要考查切線的判定與性質,全等三角形的判定與性質,含30°角的直角三角形的性質,扇形的面積公式等,難度中等,屬于綜合題,解此題的關鍵在于熟練掌握其知識點.22、(1)100;(2)作圖見解析;(3)1.【解析】試題分析:(1)根據百分比=計算即可;(2)求出“打球”和“其他”的人數(shù),畫出條形圖即可;(3)用樣本估計總體的思想解決問題即可.試題解析:(1)本次抽樣調查中的樣本容量=30÷30%=100,故答案為100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,條形圖如圖所示:(3)估計該校課余興趣愛好為“打球”的學生人數(shù)為2000×40%=1人.23、(1)D(2,2);(2);(3)【解析】
(1)令x=0求出A的坐標,根據頂點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 信息安全承諾保證書樣本
- 建筑抗震設計合同
- 消防設施維護保養(yǎng)合同
- 標準招商服務合同樣本
- 車輛服務合同的賠償責任
- 石英砂采購合同糾紛
- 會展服務合同簽訂注意事項
- 民間借款展期合同模板
- 企業(yè)采購電視合同
- 掛名股東合作合同的規(guī)范化格式
- 環(huán)境隱患排查治理檔案臺賬
- 框架柱+剪力墻工程施工鋼筋綁扎安裝施工過程
- 蘇州預防性試驗、交接試驗費用標準
- 最新【SD高達G世紀-超越世界】各強力機體開發(fā)路線
- 泡沫混凝土安全技術交底
- 完整MAM-KY02S螺桿空壓機控制器MODBUSⅡ通信協(xié)議說明
- 《納米材料工程》教學大綱要點
- 長春市勞動合同樣本(共10頁)
- 南京祿口機場二期擴建工程項目融資分析報告(第一稿)
- 《做陽光少年主題班會》PPT課件(1)
- 供熱企業(yè)安全生產檢查全套記錄表格
評論
0/150
提交評論