2023-2024學年湖州市重點中學招生全國統(tǒng)一考試(江蘇卷)模擬數(shù)學試題_第1頁
2023-2024學年湖州市重點中學招生全國統(tǒng)一考試(江蘇卷)模擬數(shù)學試題_第2頁
2023-2024學年湖州市重點中學招生全國統(tǒng)一考試(江蘇卷)模擬數(shù)學試題_第3頁
2023-2024學年湖州市重點中學招生全國統(tǒng)一考試(江蘇卷)模擬數(shù)學試題_第4頁
2023-2024學年湖州市重點中學招生全國統(tǒng)一考試(江蘇卷)模擬數(shù)學試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年湖州市重點中學招生全國統(tǒng)一考試(江蘇卷)模擬數(shù)學試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②2.已知定義在上的函數(shù),若函數(shù)為偶函數(shù),且對任意,,都有,若,則實數(shù)的取值范圍是()A. B. C. D.3.五行學說是華夏民族創(chuàng)造的哲學思想,是華夏文明重要組成部分.古人認為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關(guān)系.若從5類元素中任選2類元素,則2類元素相生的概率為()A. B. C. D.4.若為過橢圓中心的弦,為橢圓的焦點,則△面積的最大值為()A.20 B.30 C.50 D.605.已知向量,,則向量與的夾角為()A. B. C. D.6.已知定義在R上的偶函數(shù)滿足,當時,,函數(shù)(),則函數(shù)與函數(shù)的圖象的所有交點的橫坐標之和為()A.2 B.4 C.5 D.67.若函數(shù)滿足,且,則的最小值是()A. B. C. D.8.已知數(shù)列為等差數(shù)列,為其前項和,,則()A. B. C. D.9.設(shè),是非零向量,若對于任意的,都有成立,則A. B. C. D.10.已知函數(shù)滿足,且,則不等式的解集為()A. B. C. D.11.已知等差數(shù)列的公差為,前項和為,,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,若對任意的恒成立,則實數(shù)().A.6 B.5 C.4 D.312.如圖,中,點D在BC上,,將沿AD旋轉(zhuǎn)得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關(guān)系是()A. B.C.,兩種情況都存在 D.存在某一位置使得二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點坐標為______.14.若曲線(其中常數(shù))在點處的切線的斜率為1,則________.15.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.16.從2、3、5、7、11、13這六個質(zhì)數(shù)中任取兩個數(shù),這兩個數(shù)的和仍是質(zhì)數(shù)的概率是________(結(jié)果用最簡分數(shù)表示)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(I)若討論的單調(diào)性;(Ⅱ)若,且對于函數(shù)的圖象上兩點,存在,使得函數(shù)的圖象在處的切線.求證:.18.(12分)已知函數(shù),設(shè)的最小值為m.(1)求m的值;(2)是否存在實數(shù)a,b,使得,?并說明理由.19.(12分)在中,角,,的對邊分別為,,,已知.(1)若,,成等差數(shù)列,求的值;(2)是否存在滿足為直角?若存在,求的值;若不存在,請說明理由.20.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(是參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求直線與曲線的普通方程,并求出直線的傾斜角;(2)記直線與軸的交點為是曲線上的動點,求點的最大距離.21.(12分)我國在貴州省平塘縣境內(nèi)修建的500米口徑球面射電望遠鏡(FAST)是目前世界上最大單口徑射電望遠鏡.使用三年來,已發(fā)現(xiàn)132顆優(yōu)質(zhì)的脈沖星候選體,其中有93顆已被確認為新發(fā)現(xiàn)的脈沖星,脈沖星是上世紀60年代天文學的四大發(fā)現(xiàn)之一,脈沖星就是正在快速自轉(zhuǎn)的中子星,每一顆脈沖星每兩脈沖間隔時間(脈沖星的自轉(zhuǎn)周期)是-定的,最小小到0.0014秒,最長的也不過11.765735秒.某-天文研究機構(gòu)觀測并統(tǒng)計了93顆已被確認為新發(fā)現(xiàn)的脈沖星的自轉(zhuǎn)周期,繪制了如圖的頻率分布直方圖.(1)在93顆新發(fā)現(xiàn)的脈沖星中,自轉(zhuǎn)周期在2至10秒的大約有多少顆?(2)根據(jù)頻率分布直方圖,求新發(fā)現(xiàn)脈沖星自轉(zhuǎn)周期的平均值.22.(10分)已知函數(shù).(1)若曲線的切線方程為,求實數(shù)的值;(2)若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側(cè)面時.【詳解】①當直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側(cè)面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關(guān)系,選擇題一般可通過特殊值法進行排除,屬于簡單題目.2.A【解析】

根據(jù)題意,分析可得函數(shù)的圖象關(guān)于對稱且在上為減函數(shù),則不等式等價于,解得的取值范圍,即可得答案.【詳解】解:因為函數(shù)為偶函數(shù),所以函數(shù)的圖象關(guān)于對稱,因為對任意,,都有,所以函數(shù)在上為減函數(shù),則,解得:.即實數(shù)的取值范圍是.故選:A.【點睛】本題考查函數(shù)的對稱性與單調(diào)性的綜合應(yīng)用,涉及不等式的解法,屬于綜合題.3.A【解析】

列舉出金、木、水、火、土任取兩個的所有結(jié)果共10種,其中2類元素相生的結(jié)果有5種,再根據(jù)古典概型概率公式可得結(jié)果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結(jié)果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結(jié)果,所以2類元素相生的概率為,故選A.【點睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時,找準基本事件個數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.4.D【解析】

先設(shè)A點的坐標為,根據(jù)對稱性可得,在表示出面積,由圖象遏制,當點A在橢圓的頂點時,此時面積最大,再結(jié)合橢圓的標準方程,即可求解.【詳解】由題意,設(shè)A點的坐標為,根據(jù)對稱性可得,則的面積為,當最大時,的面積最大,由圖象可知,當點A在橢圓的上下頂點時,此時的面積最大,又由,可得橢圓的上下頂點坐標為,所以的面積的最大值為.故選:D.【點睛】本題主要考查了橢圓的標準方程及簡單的幾何性質(zhì),以及三角形面積公式的應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及化歸與轉(zhuǎn)化思想的應(yīng)用.5.C【解析】

求出,進而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標運算,考查了數(shù)量積的坐標表示.求向量夾角時,通常代入公式進行計算.6.B【解析】

由函數(shù)的性質(zhì)可得:的圖像關(guān)于直線對稱且關(guān)于軸對稱,函數(shù)()的圖像也關(guān)于對稱,由函數(shù)圖像的作法可知兩個圖像有四個交點,且兩兩關(guān)于直線對稱,則與的圖像所有交點的橫坐標之和為4得解.【詳解】由偶函數(shù)滿足,可得的圖像關(guān)于直線對稱且關(guān)于軸對稱,函數(shù)()的圖像也關(guān)于對稱,函數(shù)的圖像與函數(shù)()的圖像的位置關(guān)系如圖所示,可知兩個圖像有四個交點,且兩兩關(guān)于直線對稱,則與的圖像所有交點的橫坐標之和為4.故選:B【點睛】本題主要考查了函數(shù)的性質(zhì),考查了數(shù)形結(jié)合的思想,掌握函數(shù)的性質(zhì)是解題的關(guān)鍵,屬于中檔題.7.A【解析】

由推導出,且,將所求代數(shù)式變形為,利用基本不等式求得的取值范圍,再利用函數(shù)的單調(diào)性可得出其最小值.【詳解】函數(shù)滿足,,即,,,,即,,則,由基本不等式得,當且僅當時,等號成立.,由于函數(shù)在區(qū)間上為增函數(shù),所以,當時,取得最小值.故選:A.【點睛】本題考查代數(shù)式最值的計算,涉及對數(shù)運算性質(zhì)、基本不等式以及函數(shù)單調(diào)性的應(yīng)用,考查計算能力,屬于中等題.8.B【解析】

利用等差數(shù)列的性質(zhì)求出的值,然后利用等差數(shù)列求和公式以及等差中項的性質(zhì)可求出的值.【詳解】由等差數(shù)列的性質(zhì)可得,.故選:B.【點睛】本題考查等差數(shù)列基本性質(zhì)的應(yīng)用,同時也考查了等差數(shù)列求和,考查計算能力,屬于基礎(chǔ)題.9.D【解析】

畫出,,根據(jù)向量的加減法,分別畫出的幾種情況,由數(shù)形結(jié)合可得結(jié)果.【詳解】由題意,得向量是所有向量中模長最小的向量,如圖,當,即時,最小,滿足,對于任意的,所以本題答案為D.【點睛】本題主要考查了空間向量的加減法,以及點到直線的距離最短問題,解題的關(guān)鍵在于用有向線段正確表示向量,屬于基礎(chǔ)題.10.B【解析】

構(gòu)造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,即可得到結(jié)論.【詳解】設(shè),則函數(shù)的導數(shù),,,即函數(shù)為減函數(shù),,,則不等式等價為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點睛】本題主要考查利用導數(shù)研究函數(shù)單調(diào)性,根據(jù)函數(shù)的單調(diào)性解不等式,考查學生分析問題解決問題的能力,是難題.11.C【解析】

若對任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時的n即可.【詳解】由已知,,又三角形有一個內(nèi)角為,所以,,解得或(舍),故,當時,取得最大值,所以.故選:C.【點睛】本題考查等差數(shù)列前n項和的最值問題,考查學生的計算能力,是一道基礎(chǔ)題.12.A【解析】

根據(jù)題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過點作交于點,過作的垂線,垂足為,則易得,.設(shè),則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點睛】本題考查空間直線與平面所成的角的大小關(guān)系,考查三角函數(shù)的圖象和性質(zhì),意在考查學生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

變換得到,計算焦點得到答案.【詳解】拋物線的標準方程為,,所以焦點坐標為.故答案為:【點睛】本題考查了拋物線的焦點坐標,屬于簡單題.14.【解析】

利用導數(shù)的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.【點睛】本題考查導數(shù)的幾何意義,考查學生的基本運算能力,是一道基礎(chǔ)題.15.【解析】

利用等差數(shù)列的通項公式以及等比中項的性質(zhì),化簡求出公差與的關(guān)系,然后轉(zhuǎn)化求解的值.【詳解】設(shè)等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點睛】本題考查等差數(shù)列通項公式以及等比中項的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.16.【解析】

依據(jù)古典概型的計算公式,分別求“任取兩個數(shù)”和“任取兩個數(shù),和是質(zhì)數(shù)”的事件數(shù),計算即可?!驹斀狻俊叭稳蓚€數(shù)”的事件數(shù)為,“任取兩個數(shù),和是質(zhì)數(shù)”的事件有(2,3),(2,5),(2,11)共3個,所以任取兩個數(shù),這兩個數(shù)的和仍是質(zhì)數(shù)的概率是?!军c睛】本題主要考查古典概型的概率求法。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)見證明【解析】

(1)對函數(shù)求導,分別討論,以及,即可得出結(jié)果;(2)根據(jù)題意,由導數(shù)幾何意義得到,將證明轉(zhuǎn)化為證明即可,再令,設(shè),用導數(shù)方法判斷出的單調(diào)性,進而可得出結(jié)論成立.【詳解】(1)解:易得,函數(shù)的定義域為,,令,得或.①當時,時,,函數(shù)單調(diào)遞減;時,,函數(shù)單調(diào)遞增.此時,的減區(qū)間為,增區(qū)間為.②當時,時,,函數(shù)單調(diào)遞減;或時,,函數(shù)單調(diào)遞增.此時,的減區(qū)間為,增區(qū)間為,.③當時,時,,函數(shù)單調(diào)遞增;此時,的減區(qū)間為.綜上,當時,的減區(qū)間為,增區(qū)間為:當時,的減區(qū)間為,增區(qū)間為.;當時,增區(qū)間為.(2)證明:由題意及導數(shù)的幾何意義,得由(1)中得.易知,導函數(shù)在上為增函數(shù),所以,要證,只要證,即,即證.因為,不妨令,則.所以,所以在上為增函數(shù),所以,即,所以,即,即.故有(得證).【點睛】本題主要考查導數(shù)的應(yīng)用,通常需要對函數(shù)求導,利用導數(shù)的方法研究函數(shù)的單調(diào)性以及函數(shù)極值等即可,屬于常考題型.18.(1)(2)不存在;詳見解析【解析】

(1)將函數(shù)去絕對值化為分段函數(shù)的形式,從而可求得函數(shù)的最小值,進而可得m.(2)由,利用基本不等式即可求出.【詳解】(1);(2),若,同號,,不成立;或,異號,,不成立;故不存在實數(shù),,使得,.【點睛】本題考查了分段函數(shù)的最值、基本不等式的應(yīng)用,屬于基礎(chǔ)題.19.見解析【解析】

(1)因為,,成等差數(shù)列,所以,由余弦定理可得,因為,所以,即,所以.(2)若B為直角,則,,由及正弦定理可得,所以,即,上式兩邊同時平方,可得,所以(*).又,所以,,所以,與(*)矛盾,所以不存在滿足為直角.20.(1),,直線的傾斜角為(2)【解析】

(1)由公式消去參數(shù)得普通方程,由公式可得直角坐標方程后可得傾斜角;(2)求出直線與軸交點,用參數(shù)表示點坐標,求出,利用三角函數(shù)的性質(zhì)可得最大值.【詳解】(1)由,消去得的普通方程是:由,得,將代入上式,化簡得直線的傾斜角為(2)在曲線上任取一點,直線與軸的交點的坐標為則當且僅當時,取最大值.【點睛】本題考查參數(shù)方程與普通方程的互化,考查極坐標方程與直角坐標方程的互化,屬于基礎(chǔ)題.求兩點間距離的最值時,用參數(shù)方程設(shè)點的坐標可把問題轉(zhuǎn)化為三角函數(shù)問題.21.(1)79顆;(2)5.5秒.【解析】

(1)利用各小矩形的面積和為1可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論