版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
宿州市重點中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在(0,e]上的最大值為()A.-1 B.1C.0 D.e2.已知雙曲線的離心率為5,則其標(biāo)準(zhǔn)方程為()A. B.C. D.3.如圖,是水平放置的的直觀圖,其中,,分別與軸,軸平行,則()A.2 B.C.4 D.4.?dāng)?shù)列是公差不為零的等差數(shù)列,為其前n項和.若對任意的,都有,則的值不可能是()A. B.2C. D.35.雙曲線的焦點坐標(biāo)是()A. B.C. D.6.觀察下列各式:,,,,,可以得出的一般結(jié)論是A.B.C.D.7.在數(shù)列中,,,則()A. B.C. D.8.已知不等式的解集為,關(guān)于x的不等式的解集為B,且,則實數(shù)a的取值范圍為()A. B.C. D.9.若直線與曲線只有一個公共點,則m的取值范圍是()A. B.C.或 D.或10.已知x>0、y>0,且1,若恒成立,則實數(shù)m的取值范圍為()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)11.圓錐曲線具有豐富的光學(xué)性質(zhì),從橢圓的一個焦點發(fā)出的光線,經(jīng)過橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點.直線l:與橢圓C:相切于點P,橢圓C的焦點為,,由光學(xué)性質(zhì)知直線,與l的夾角相等,則的角平分線所在的直線的方程為()A. B.C. D.12.三棱錐D-ABC中,AC=BD,且異面直線AC與BD所成角為60°,E、F分別是棱DC、AB的中點,則EF和AC所成的角等于()A.30° B.30°或60°C.60° D.120°二、填空題:本題共4小題,每小題5分,共20分。13.過拋物線的焦點作傾斜角為的直線,與拋物線分別交于兩點(點在軸上方),_________14.若函數(shù)解析式,則使得成立的的取值范圍是___________.15.已知拋物線C:的焦點F到準(zhǔn)線的距離為4,過點F和的直線l與拋物線C交于P,Q兩點.若,則________.16.設(shè)圓,圓,則圓有公切線___________條.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,其圓心在直線上.(1)求的值;(2)若過點的直線與相切,求的方程.18.(12分)已知首項為1的數(shù)列滿足.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前n項和.19.(12分)已知點F是拋物線和橢圓的公共焦點,是與的交點,.(1)求橢圓的方程;(2)直線與拋物線相切于點,與橢圓交于,,點關(guān)于軸的對稱點為.求的最大值及相應(yīng)的.20.(12分)已知是橢圓的兩個焦點,P為C上一點,O為坐標(biāo)原點(1)若為等邊三角形,求C的離心率;(2)如果存在點P,使得,且的面積等于16,求b的值和a的取值范圍.21.(12分)已知等差數(shù)列滿足,.(1)求的通項公式;(2)設(shè),求數(shù)列的前項和.22.(10分)若存在實常數(shù)k和b,使得函數(shù)和對其公共定義域上的任意實數(shù)x都滿足:和恒成立,則稱此直線y=kx+b為和的“隔離直線”.已知函數(shù),.(1)證明函數(shù)在內(nèi)單調(diào)遞增;(2)證明和之間存在“隔離直線”,且b的最小值為-4.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】對函數(shù)求導(dǎo),然后求出函數(shù)的單調(diào)區(qū)間,從而可求出函數(shù)的最大值【詳解】由,得,當(dāng)時,,當(dāng),,所以在上單調(diào)遞增,在上單調(diào)遞減,所以當(dāng)時,取得最大值,故選:A2、D【解析】雙曲線離心率公式和a、b、c的關(guān)系即可求得m,從而得到雙曲線的標(biāo)準(zhǔn)方程.【詳解】∵雙曲線,∴,又,∴,∵離心率為,∴,解得,∴雙曲線方程.故選:D.3、D【解析】先確定是等腰直角三角形,求出,再確定原圖的形狀,進(jìn)而求出.【詳解】由題意可知是等腰直角三角形,,其原圖形是,,,,則,故選:D.4、A【解析】由已知建立不等式組,可求得,再對各選項逐一驗證可得選項.【詳解】解:因為數(shù)列是公差不為零的等差數(shù)列,為其前n項和.對任意的,都有,所以,即,解得,則當(dāng)時,,不成立;當(dāng)時,,成立;當(dāng)時,,成立;當(dāng)時,,成立;所以的值不可能是,故選:A.5、B【解析】根據(jù)雙曲線的方程,求得,結(jié)合雙曲線的幾何性質(zhì),即可求解.【詳解】由題意,雙曲線,可得,所以,且雙曲線的焦點再軸上,所以雙曲線的焦點坐標(biāo)為.故選:B.6、C【解析】1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以歸納:左邊每一個式子均有2n-1項,且第一項為n,則最后一項為3n-2右邊均為2n-1的平方故選C點睛:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達(dá)的一般性命題(猜想)7、A【解析】根據(jù)已知條件,利用累加法得到的通項公式,從而得到.【詳解】由,得,所以,所以.故選:A.8、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數(shù)求解即可.【詳解】由得,,解得,因為,所以所以可得在上恒成立,即在上恒成立,故只需,,當(dāng)時,,故故選:B9、D【解析】根據(jù)曲線方程的特征,發(fā)現(xiàn)曲線表示在軸上方的圖象,畫出圖形,根據(jù)圖形上直線的三個特殊位置,當(dāng)已知直線位于直線位置時,把已知直線的解析式代入橢圓方程中,消去得到關(guān)于的一元二次方程,由題意可知根的判別式等于0即可求出此時對應(yīng)的的值;當(dāng)已知直線位于直線及直線的位置時,分別求出對應(yīng)的的值,寫出滿足題意得的范圍,綜上,得到所有滿足題意得的取值范圍【詳解】根據(jù)曲線,得到,解得:;,畫出曲線的圖象,為橢圓在軸上邊的一部分,如圖所示:當(dāng)直線在直線的位置時,直線與橢圓相切,故只有一個交點,把直線代入橢圓方程得:,得到,即,化簡得:,解得或(舍去),則時,直線與曲線只有一個公共點;當(dāng)直線在直線位置時,直線與曲線剛好有兩個交點,此時,當(dāng)直線在直線位置時,直線與曲線只有一個公共點,此時,則當(dāng)時,直線與曲線只有一個公共點,綜上,滿足題意得的范圍是或故選:D10、B【解析】應(yīng)用基本不等式“1”的代換求的最小值,注意等號成立條件,再根據(jù)題設(shè)不等式恒成立有,解一元二次不等式求解集即可.【詳解】由題設(shè),,當(dāng)且僅當(dāng)時等號成立,∴要使恒成立,只需,故,∴.故選:B.11、A【解析】先求得點坐標(biāo),然后求得的角平分線所在的直線的方程.【詳解】,直線的斜率為,由于直線,與l的夾角相等,則的角平分線所在的直線的斜率為,所以所求直線方程為.故選:A12、B【解析】取AD中點為G,連接GF、GE,易知△EFG為等腰三角形,且∠EGF為異面直線AC和BD所成角或其補角,據(jù)此可求∠FEG大小,從而得EF和AC所成的角的大小【詳解】如圖,取AD中點為G,連接GF、GE,易知FG∥BD,GE∥AC,且FG=,GE=AC,故FG=GE,∠EGF為異面直線AC和BD所成角或其補角,故∠EGF=60°或120°故EF和AC所成角為∠FEG或其補角,當(dāng)∠EGF=60°時,∠FEG=60°,當(dāng)∠EGF=120°時,∠FEG=30°,∴EF和AC所成的角等于30°或60°故選:B二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)拋物線焦半徑公式,所以.故答案為:3.14、【解析】由題意先判斷函數(shù)為偶函數(shù),再利用的導(dǎo)函數(shù)判斷在上單調(diào)遞增,根據(jù)偶函數(shù)的對稱性得上單調(diào)遞減.要使成立,即,解不等式即可得到答案.【詳解】,,為偶函數(shù),當(dāng)時,,故函數(shù)在上單調(diào)遞增.為偶函數(shù),在上單調(diào)遞減.要使成立,即.故答案為:.15、9【解析】根據(jù)拋物線C:的焦點F到準(zhǔn)線的距離為4,求得拋物線方程.再由和,得到點P的坐標(biāo),進(jìn)而得到直線l的方程,與拋物線方程聯(lián)立求得的坐標(biāo),再由兩點間距離公式求解.【詳解】由拋物線C:的焦點F到準(zhǔn)線的距離為4,所以,所以拋物線方程為.因為,,所以點P的縱坐標(biāo)為1,代入拋物線方程,可得點P的橫坐標(biāo)為,不妨設(shè),則,故直線l的方程為,將其代入得.可得,故.故答案為:9【點睛】本題主要考查拋物線的方程與性質(zhì),還考查了運算求解的能力,屬于中檔題.16、2【解析】將圓轉(zhuǎn)化成標(biāo)準(zhǔn)式,結(jié)合圓心距判斷兩圓位置關(guān)系,進(jìn)而求解.【詳解】由題意得,圓:,圓:,∴,∴與相交,有2條公切線.故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)將圓的一般方程化為標(biāo)準(zhǔn)方程,求出圓心,代入直線方程即可求解.(2)設(shè)直線的方程為:,利用圓心到直線的距離即可求解.【小問1詳解】圓的標(biāo)準(zhǔn)方程為:,所以,圓心為由圓心在直線上,得.所以,圓的方程為:【小問2詳解】由題意可知直線的斜率存在,設(shè)直線的方程為:,即由于直線和圓相切,得解得:所以,直線方程為:或.18、(1)(2)【解析】(1)由,構(gòu)造是以為首項,為公比等比數(shù)列,利用等比數(shù)列的通項公式可得結(jié)果;(2)由(1)得,利用裂項相消可求.【小問1詳解】由,得,又,所以數(shù)列是首項為2,公比為2的等比數(shù)列,則,即,故數(shù)列的通項公式為.【小問2詳解】由(1)知,,所以.因為,所以,所以數(shù)列的前n項和.19、(1);(2),.【解析】(1)根據(jù)題意可得,然后根據(jù),,計算可得,最后可得結(jié)果.(2)假設(shè)直線的方程為,根據(jù)與拋物線相切,可得,然后與橢圓聯(lián)立,計算,然后計算點到的距離,計算,利用函數(shù)性質(zhì)可得結(jié)果.【詳解】(1)由題意知:,.,得:,所以.所以的方程為.(2)設(shè)直線的方程為,則由,得得:所以直線的方程為.由,得得.又,所以點到的距離為..令,則,.此時,即【點睛】本題考查直線與圓錐曲線的綜合以及三角形面積問題,本題著重考查對問題分析能力以及計算能力,屬難題.20、(1);(2),a的取值范圍為.【解析】(1)先連結(jié),由為等邊三角形,得到,,;再由橢圓定義,即可求出結(jié)果;(2)先由題意得到,滿足條件的點存在,當(dāng)且僅當(dāng),,,根據(jù)三個式子聯(lián)立,結(jié)合題中條件,即可求出結(jié)果.【詳解】(1)連結(jié),由等邊三角形可知:在中,,,,于是,故橢圓C的離心率為;(2)由題意可知,滿足條件的點存在,當(dāng)且僅當(dāng),,,即①②③由②③以及得,又由①知,故;由②③得,所以,從而,故;當(dāng),時,存在滿足條件的點.故,a的取值范圍為.【點睛】本題主要考查求橢圓的離心率,以及橢圓中存在定點滿足題中條件的問題,熟記橢圓的簡單性質(zhì)即可求解,考查計算能力,屬于中檔試題.21、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)題意可得出關(guān)于、的方程組,解出這兩個量的值,可得出數(shù)列的通項公式;(2)求得,利用裂項法可求得.【小問1詳解】解:設(shè)等差數(shù)列的公差為,則,可得,由可得,即,解得,,故.【小問2詳解】解:,因此,.22、(1)見解析(2)見解析【解析】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《聲和超聲》課件
- 杭州市住宅小區(qū)前期物業(yè)服務(wù)合同模板
- 工程造價專用合同條款
- 《氨基丁酸養(yǎng)生的》課件
- 2025年陜西貨運從業(yè)資格證考試模擬試題
- 2025年博爾塔拉貨運從業(yè)資格證考試技巧
- 2025年拉薩貨運從業(yè)資格證模擬考試題下載
- 2025年東莞貨運從業(yè)資格考試
- 《民事案例實例分析》課件
- 文化產(chǎn)業(yè)招投標(biāo)合同管理要點
- 流行性感冒健康宣教
- 理解生活滿意度的標(biāo)準(zhǔn)和評估方法
- 中醫(yī)五則診斷法在臨床中的應(yīng)用與誤區(qū)
- 《初中語文教學(xué)中的跨學(xué)科融合與創(chuàng)新實踐》
- 《金子美玲兒童詩》課件
- 甌北城市新區(qū)污水管網(wǎng)修復(fù)工程質(zhì)量評估報告(樣表)
- (人教版新目標(biāo))八年級英語上冊全冊各單元知識點期末總復(fù)習(xí)講解教學(xué)課件
- 無障礙醫(yī)用電梯人性化改造
- 房地產(chǎn)公司組織結(jié)構(gòu)部門職能崗位職責(zé)大全
- 蘇教版四年級上冊數(shù)學(xué)期末測試卷-及答案
- 工程地質(zhì)調(diào)查規(guī)范
評論
0/150
提交評論