版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆云南省紅河州高二上數(shù)學(xué)期末聯(lián)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知銳角的內(nèi)角A,B,C的對邊分別為a,b,c,若向量,,,則的最小值為()A. B.C. D.2.過點(diǎn)(-2,1)的直線中,被圓x2+y2-2x+4y=0截得的弦最長的直線的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=03.圓與圓的位置關(guān)系為()A.外切 B.內(nèi)切C.相交 D.相離4.某工廠去年的電力消耗為千瓦,由于設(shè)各更新,該工廠計(jì)劃每年比上一年的電力消耗減少,則從今年起,該工廠第5年消耗的電力為()A.m千瓦 B.m千瓦C.m千瓦 D.m千瓦5.已知直線與直線平行,則實(shí)數(shù)a的值為()A.1 B.C.1或 D.6.已知函數(shù),則函數(shù)在區(qū)間上的最小值為()A. B.C. D.7.已知是拋物線的焦點(diǎn),是拋物線的準(zhǔn)線,點(diǎn),連接交拋物線于點(diǎn),,則的面積為()A.4 B.9C. D.8.直線x﹣y+3=0的傾斜角是()A.30° B.45°C.60° D.150°9.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的中心為原點(diǎn),焦點(diǎn),均在y軸上,橢圓C的面積為,且短軸長為,則橢圓C的標(biāo)準(zhǔn)方程為()A. B.C. D.10.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長線上一點(diǎn),,則為()A. B.C. D.11.橢圓以坐標(biāo)軸為對稱軸,經(jīng)過點(diǎn),且長軸長是短軸長的倍,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C.或 D.或12.某社區(qū)醫(yī)院為了了解社區(qū)老人與兒童每月患感冒的人數(shù)y(人)與月平均氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4個月的患?。ǜ忻埃┤藬?shù)與當(dāng)月平均氣溫,其數(shù)據(jù)如下表:月平均氣溫x(℃)171382月患病y(人)24334055由表中數(shù)據(jù)算出線性回歸方程中的,氣象部門預(yù)測下個月的平均氣溫約為9℃,據(jù)此估計(jì)該社區(qū)下個月老年人與兒童患病人數(shù)約為()A.38 B.40C.46 D.58二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則________.14.在2021件產(chǎn)品中有10件次品,任意抽取3件,則抽到次品個數(shù)的數(shù)學(xué)期望的值是______.15.已知橢圓的短軸長為2,上頂點(diǎn)為,左頂點(diǎn)為,左、右焦點(diǎn)分別是,,且的面積為,點(diǎn)為橢圓上的任意一點(diǎn),則的取值范圍是______.16.已知圓錐的母線長為cm,其側(cè)面展開圖是一個半圓,則底面圓的半徑為____cm.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知兩點(diǎn)(1)求以線段為直徑的圓C的方程;(2)在(1)中,求過M點(diǎn)的圓C的切線方程18.(12分)已知,(1)若,p且q為真命題,求實(shí)數(shù)x的取值范圍;(2)若p是q的充分條件,求實(shí)數(shù)m的取值范圍19.(12分)設(shè)數(shù)列的前n項(xiàng)和為,且,數(shù)列(1)求和的通項(xiàng)公式;(2)設(shè)數(shù)列的前n項(xiàng)和為,證明:20.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是一個直角梯形,其中∠BAD=90°,AB∥DC,PA⊥底面ABCD,AB=AD=PA=2,DC=1,點(diǎn)M和點(diǎn)N分別為PA和PC的中點(diǎn)(1)證明:直線DM∥平面PBC;(2)求直線BM和平面BDN所成角的余弦值;(3)求二面角M-BD-N正弦值;(4)求點(diǎn)P到平面DBN距離;(5)設(shè)點(diǎn)N在平面BDM內(nèi)的射影為點(diǎn)H,求線段HA的長21.(12分)已知函數(shù)(1)判斷的零點(diǎn)個數(shù);(2)若對任意恒成立,求的取值范圍22.(10分)已知函數(shù).(1)求曲線在點(diǎn)處的切線的方程.(2)若直線為曲線切線,且經(jīng)過坐標(biāo)原點(diǎn),求直線的方程及切點(diǎn)坐標(biāo).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由,得到,根據(jù)正弦、余弦定理定理化簡得到,化簡得到,再結(jié)合基本不等式,即可求解.【詳解】由題意,向量,,因?yàn)?,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因?yàn)?,所以,由,所以,因?yàn)槭卿J角三角形,且,可得,解得,所以,所以,當(dāng)且僅當(dāng),即時(shí)等號成立,故的最小值為.故選:C2、A【解析】當(dāng)直線被圓截得的最弦長最大時(shí),直線要經(jīng)過圓心,即圓心在直線上,然后根據(jù)兩點(diǎn)式方程可得所求【詳解】由題意得,圓的方程為,∴圓心坐標(biāo)為∵直線被圓截得的弦長最大,∴直線過圓心,又直線過點(diǎn)(-2,1),所以所求直線的方程為,即故選:A3、A【解析】根據(jù)兩圓半徑和、差、圓心距之間的大小關(guān)系進(jìn)行判斷即可.【詳解】由,該圓的圓心為,半徑為.圓圓心為,半徑為,因?yàn)閮蓤A的圓心距為,兩圓的半徑和為,所以兩圓的半徑和等于兩圓的圓心距,因此兩圓相外切,故選:A4、D【解析】根據(jù)等比數(shù)列的定義進(jìn)行求解即可.【詳解】因?yàn)槿ツ甑碾娏ο臑榍?,工廠計(jì)劃每年比上一年的電力消耗減少,所以今年的電力消耗為,因此從今年起,該工廠第5年消耗的電力為,故選:D5、A【解析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗(yàn)后確定正確答案.【詳解】由于直線與直線平行,所以,或,當(dāng)時(shí),兩直線方程都為,即兩直線重合,所以不符合題意.經(jīng)檢驗(yàn)可知符合題意.故選:A6、B【解析】根據(jù)已知條件求得以及,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可求得函數(shù)在區(qū)間上的最小值.【詳解】因?yàn)?,故可得,則,又,令,解得,令,解得,故在單調(diào)遞減,在單調(diào)遞增,又,故在區(qū)間上的最小值為.故選:.7、D【解析】根據(jù)題意求得拋物線的方程為和焦點(diǎn)為,由,得到為的中點(diǎn),得到,代入拋物線方程,求得,進(jìn)而求得的面積.【詳解】由直線是拋物線的準(zhǔn)線,可得,即,所以拋物線的方程為,其焦點(diǎn)為,因?yàn)?,可得可得三點(diǎn)共線,且為的中點(diǎn),又因?yàn)?,,所以,將點(diǎn)代入拋物線,可得,所以的面積為.故選:D.8、C【解析】先求斜率,再求傾斜角即可【詳解】解:直線的斜截式方程為,∴直線的斜率,∴傾斜角,故選:C【點(diǎn)睛】本題主要考查直線的傾斜角與斜率,屬于基礎(chǔ)題9、C【解析】設(shè)出橢圓的標(biāo)準(zhǔn)方程,根據(jù)已知條件,求得,即可求得結(jié)果.【詳解】因?yàn)闄E圓的焦點(diǎn)在軸上,故可設(shè)其方程為,根據(jù)題意可得,,故可得,故所求橢圓方程為:.故選:C.10、B【解析】根據(jù)空間向量運(yùn)算求得正確答案.【詳解】.故選:B11、C【解析】分情況討論焦點(diǎn)所在位置及橢圓方程.【詳解】當(dāng)橢圓的焦點(diǎn)在軸上時(shí),由題意過點(diǎn),故,,橢圓方程為,當(dāng)橢圓焦點(diǎn)在軸上時(shí),,,橢圓方程為,故選:C.12、B【解析】由表格數(shù)據(jù)求樣本中心,根據(jù)線性回歸方程過樣本中心點(diǎn),將點(diǎn)代入方程求參數(shù),寫出回歸方程,進(jìn)而估計(jì)下個月老年人與兒童患病人數(shù).【詳解】由表格得為,由回歸方程中的,∴,解得,即,當(dāng)時(shí),.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)導(dǎo)數(shù)的計(jì)算法則計(jì)算即可.【詳解】∵,∴,∴∴.故答案為:2.14、【解析】設(shè)抽到的次品的個數(shù)為,則,求出對應(yīng)的概率即得解.【詳解】解:設(shè)抽到的次品的個數(shù)為,則,所以所以抽到次品個數(shù)的數(shù)學(xué)期望的值是故答案為:15、【解析】根據(jù)的面積和短軸長得出a,b,c的值,從而得出的范圍,得到關(guān)于的函數(shù),從而求出答案【詳解】由已知得,故,∵的面積為,∴,∴,又,∴,,∴,又,∴,∴.即的取值范圍為.故答案為點(diǎn)睛】本題考查了橢圓的簡單性質(zhì),函數(shù)最值的計(jì)算,熟練掌握橢圓的基本性質(zhì)是解題的關(guān)鍵,屬于中檔題16、【解析】根據(jù)題意可知圓錐側(cè)面展開圖的半圓的半徑為cm,再根據(jù)底面圓的周長等于側(cè)面的弧長,即可求出結(jié)果.【詳解】設(shè)底面圓的半徑為,由于側(cè)面展開圖是一個半圓,又圓錐的母線長為cm,所以該半圓的半徑為cm,所以,所以(cm).故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)求出圓心和半徑即可得到答案;(2)根據(jù)題意先求出切線的斜率,進(jìn)而通過點(diǎn)斜式求出切線方程.【小問1詳解】由題意,圓心,半徑,則圓C的方程為:.【小問2詳解】由題意,,則切線斜率為-1,所以切線方程為:.18、(1);(2).【解析】(1)解一元二次不等式可得命題p,q所對集合,再求交集作答.(2)求出命題q所對集合,再利用集合的包含關(guān)系列式計(jì)算作答.【小問1詳解】解不等式得:,則命題p所對集合,當(dāng)時(shí),解不等式得:,則命題q所對集合,由p且q為真命題,則,所以實(shí)數(shù)x的取值范圍是.【小問2詳解】解不等式得:,則命題q所對集合,因p是q的充分條件,則,于是得,解得,所以實(shí)數(shù)m的取值范圍是.19、(1),(2)證明見解析【解析】(1)根據(jù)可得,從而可得;(2)利用錯位相減法可得,從而可得,又,即可證明不等式成立.【小問1詳解】解:∵,∴當(dāng)時(shí),,當(dāng)時(shí),,∴,經(jīng)檢驗(yàn),也符合,∴,;【小問2詳解】證明:因?yàn)?,∴,∴∴,又∵,∴,所?0、(1)證明見解析(2)(3)(4)(5)【解析】(1)以為原點(diǎn),建立空間直角坐標(biāo)系,利用向量法,證明與平面的法向量垂直,從而證明直線平面(2)求出平面的法向量,利用向量法,求出直線和平面所成角的余弦值(3)求出平面的法向量和平面的法向量,利用向量法,求出二面角的正弦值(4)求出的坐標(biāo),再求出平面的法向量,利用向量法,求出點(diǎn)到平面的距離;(5)設(shè)點(diǎn)在平面內(nèi)的射影為點(diǎn),從而表示出的坐標(biāo),求出到平面的距離,列出方程組,求出點(diǎn)坐標(biāo),從而求出的長度.【小問1詳解】四棱錐,底面是一個直角梯形,,平面,所以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,,,,,,,,,設(shè)平面的法向量,所以,,取,則,所以,平面,所以直線平面.【小問2詳解】,,,設(shè)平面的法向量,則,即,取,則,設(shè)直線與平面所成的角為,則,所以,所以直線與平面所成角的余弦值為.【小問3詳解】設(shè)平面的法向量為,則,即,取,得,平面的法向量,設(shè)二面角的平面角為,則,所以,所以二面角的正弦值為.【小問4詳解】,平面的法向量,所以點(diǎn)到平面的距離為.【小問5詳解】設(shè)點(diǎn)在平面的射影為點(diǎn),則,所以點(diǎn)到平面的距離為,根據(jù),得解得,,,或者,,(舍)所以.21、(1)個;(2).【解析】(1)求,利用導(dǎo)數(shù)判斷的單調(diào)性,結(jié)合單調(diào)性以及零點(diǎn)存在性定理即可求解;(2)由題意可得對任意恒成立,令,則,利用導(dǎo)數(shù)求的最小值即可求解.【小問1詳解】的定義域?yàn)?,由可得,?dāng)時(shí),;當(dāng)時(shí),;所以在上單調(diào)遞減,在上單調(diào)遞增,當(dāng)時(shí),,,此時(shí)在上無零點(diǎn),當(dāng)時(shí),,,,且在上單調(diào)遞增,由零點(diǎn)存在定理可得在區(qū)間上存在個零點(diǎn),綜上所述有個零點(diǎn).【小問2詳解】由題意可得:對任意恒成立,即對任意恒成立,令,則,由可得:,當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,所以,所以的取值范圍.22、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電氣工程師的工作總結(jié)
- 2025年度商業(yè)寫字樓車位使用權(quán)轉(zhuǎn)讓合同模板
- 二零二五年度大型商場消防工程驗(yàn)收及安全評估合同3篇
- 二零二五年度個人消費(fèi)信貸合同模板8篇
- 二零二五年度青少年戶外夏令營活動參加協(xié)議3篇
- 二零二五版房地產(chǎn)售后服務(wù)居間合同范本
- 二零二五年度個人房產(chǎn)買賣合同終止協(xié)議3篇
- 二零二五年度鋼材采購與供應(yīng)合同范本
- 二零二五年度深海探測設(shè)備制造個人工勞務(wù)分包合同4篇
- 二零二五年度離婚探望權(quán)協(xié)議范本與子女監(jiān)護(hù)權(quán)規(guī)定3篇
- 第22單元(二次函數(shù))-單元測試卷(2)-2024-2025學(xué)年數(shù)學(xué)人教版九年級上冊(含答案解析)
- 兒科學(xué)川崎病說課
- 2025年云南農(nóng)墾集團(tuán)總部春季社會招聘(9人)管理單位筆試遴選500模擬題附帶答案詳解
- 安全常識課件
- 河北省石家莊市2023-2024學(xué)年高一上學(xué)期期末聯(lián)考化學(xué)試題(含答案)
- 小王子-英文原版
- 中學(xué)生手機(jī)使用管理協(xié)議書
- 給排水科學(xué)與工程基礎(chǔ)知識單選題100道及答案解析
- 2024年土地變更調(diào)查培訓(xùn)
- 2024年全國外貿(mào)單證員鑒定理論試題庫(含答案)
- 2024年山東省青島市中考生物試題(含答案)
評論
0/150
提交評論