版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省濟(jì)南二中2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)集合,集合,當(dāng)有且僅有一個(gè)元素時(shí),則r的取值范圍為()A.或 B.或C.或 D.或2.已知直線l:過橢圓的左焦點(diǎn)F,與橢圓在x軸上方的交點(diǎn)為P,Q為線段PF的中點(diǎn),若,則橢圓的離心率為()A. B.C. D.3.已知命題“若,則”,命題“若,則”,則下列命題中為真命題的是()A. B.C. D.4.已知遞增等比數(shù)列的前n項(xiàng)和為,,且,則與的關(guān)系是()A. B.C. D.5.設(shè)x∈R,則x<3是0<x<3的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件6.如圖,在長(zhǎng)方體中,,,則直線和夾角余弦值為()A. B.C. D.7.已知直線l1:ax+2y=0與直線l2:2x+(2a+2)y+1=0垂直,則實(shí)數(shù)a的值為()A.﹣2 B.C.1 D.1或﹣28.在某次賽車中,名參賽選手的成績(jī)(單位:)全部介于到之間(包括和),將比賽成績(jī)分為五組:第一組,第二組,···,第五組,其頻率分布直方圖如圖所示.若成績(jī)?cè)趦?nèi)的選手可獲獎(jiǎng),則這名選手中獲獎(jiǎng)的人數(shù)為A. B.C. D.9.若:,:,則為q的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分又不必要條件10.已知,為橢圓上關(guān)于短軸對(duì)稱的兩點(diǎn),、分別為橢圓的上、下頂點(diǎn),設(shè),、分別為直線,的斜率,則的最小值為()A. B.C. D.11.已知圓C過點(diǎn),圓心在x軸上,則圓C的方程為()A. B.C. D.12.已知點(diǎn)與不重合的點(diǎn)A,B共線,若以A,B為圓心,2為半徑的兩圓均過點(diǎn),則的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在四棱錐中,平面,底面為矩形,分別為的中點(diǎn),連接,則點(diǎn)到平面的距離為__________.14.已知命題“,”為假命題,則實(shí)數(shù)m的取值范圍為______15.已知為拋物線上的動(dòng)點(diǎn),,,則的最小值為________.16.已知,且,則_____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,直線的斜率為2,且過點(diǎn)(1)判斷與的位置關(guān)系;(2)若圓,求圓與圓的公共弦長(zhǎng)18.(12分)已知圓:和圓外一點(diǎn),過點(diǎn)作圓的切線,切線長(zhǎng)為.(1)求圓的標(biāo)準(zhǔn)方程;(2)若圓:,求證:圓和圓相交,并求出兩圓的公共弦長(zhǎng).19.(12分)如圖,直三棱柱中,,,是棱的中點(diǎn),(1)求異面直線所成角的余弦值;(2)求二面角的余弦值20.(12分)已知:圓是的外接圓,邊所在直線的方程為,中線所在直線的方程為,直線與圓相切于點(diǎn).(1)求點(diǎn)和點(diǎn)的坐標(biāo);(2)求圓的方程.21.(12分)已知函數(shù),求(1)(2)(3)曲線在處的切線方程22.(10分)如圖1,在邊長(zhǎng)為2的菱形ABCD中,∠BAD=60°,將△BCD沿對(duì)角線BD折起到△BDC′的位置,如圖2所示,并使得平面BDC′⊥平面ABD,E是BD的中點(diǎn),F(xiàn)A⊥平面ABD,且FA=.圖1圖2(1)求平面FBC′與平面FBA夾角的余弦值;(2)在線段AD上是否存在一點(diǎn)M,使得⊥平面?若存在,求的值;若不存在,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由已知得集合M表示以點(diǎn)圓心,以2半徑左半圓,與y軸的交點(diǎn)為,集合N表示以點(diǎn)為圓心,以r為半徑的圓,當(dāng)圓C與圓O相外切于點(diǎn)P,有且僅有一個(gè)元素時(shí),圓C過點(diǎn)M時(shí),有且有兩個(gè)元素,當(dāng)圓C過點(diǎn)N,有且僅有一個(gè)元素,由此可求得r的取值范圍.【詳解】解:由得,所以集合M表示以點(diǎn)圓心,以2半徑的左半圓,與y軸的交點(diǎn)為,集合表示以點(diǎn)為圓心,以r為半徑的圓,如下圖所示,當(dāng)圓C與圓O相外切于點(diǎn)P時(shí),有且僅有一個(gè)元素時(shí),此時(shí),當(dāng)圓C過點(diǎn)M時(shí),有兩個(gè)元素,此時(shí),所以,當(dāng)圓C過點(diǎn)N時(shí),有且僅有一個(gè)元素,此時(shí),所以,所以當(dāng)有且僅有一個(gè)元素時(shí),則r的取值范圍為或,故選:B.2、D【解析】由直線的傾斜角為,可得,結(jié)合,可推得是等邊三角形,可得,計(jì)算可得離心率【詳解】直線:過橢圓的左焦點(diǎn),設(shè)橢圓的右焦點(diǎn)為,所以,又是的中點(diǎn),是的中點(diǎn),所以,又,所以,又,所以是等邊三角形,所以,又在橢圓上,所以,所以,所以離心率為,故選:3、D【解析】利用指數(shù)函數(shù)的單調(diào)性可判斷命題的真假,利用特殊值法可判斷命題的真假,結(jié)合復(fù)合命題的真假可判斷出各選項(xiàng)中命題的真假.【詳解】對(duì)于命題,由于函數(shù)為上的增函數(shù),當(dāng)時(shí),,命題為真命題;對(duì)于命題,若,取,,則,命題為假命題.所以,、、均為假命題,為真命題.故選:D.【點(diǎn)睛】本題考查簡(jiǎn)單命題和復(fù)合命題真假的判斷,考查推理能力,屬于基礎(chǔ)題.4、D【解析】設(shè)等比數(shù)列的公比為,由已知列式求得,再由等比數(shù)列的通項(xiàng)公式與前項(xiàng)和求解.【詳解】設(shè)等比數(shù)列的公比為,由,得,所以,又,所以,所以,,所以即故選:D5、B【解析】利用充分條件、必要條件的定義可得出結(jié)論.【詳解】,因此,“”是“”必要不充分條件.故選:B.6、D【解析】如圖建立空間直角坐標(biāo)系,分別求出的坐標(biāo),由空間向量夾角公式即可求解.【詳解】如圖:以為原點(diǎn),分別以,,所在的直線為,,軸建立空間直角坐標(biāo)系,則,,,,所以,,所以,所以直線和夾角的余弦值為,故選:D.7、B【解析】由題意,利用兩直線垂直的性質(zhì),兩直線垂直時(shí),一次項(xiàng)對(duì)應(yīng)系數(shù)之積的和等于0,計(jì)算求得a的值【詳解】∵直線l1:ax+2y=0與直線l2:2x+(2a+2)y+1=0垂直,∴a×2+2×(2a+2)=0,求得a=﹣,故選:B8、A【解析】先根據(jù)頻率分布直方圖確定成績(jī)?cè)趦?nèi)的頻率,進(jìn)而可求出結(jié)果.【詳解】由題意可得:成績(jī)?cè)趦?nèi)的頻率為,又本次賽車中,共名參賽選手,所以,這名選手中獲獎(jiǎng)的人數(shù)為.故選A【點(diǎn)睛】本題主要考查頻率分布直方圖,會(huì)根據(jù)頻率分布直方圖求頻率即可,屬于常考題型.9、D【解析】根據(jù)充分條件和必要條件的定義即可得出答案.【詳解】解:因?yàn)椋?,:,所以,所以為q的既不充分又不必要條件.故選:D.10、A【解析】設(shè)出點(diǎn),的坐標(biāo),并表示出兩個(gè)斜率、,把代數(shù)式轉(zhuǎn)化成與點(diǎn)的坐標(biāo)相關(guān)的代數(shù)式,再與橢圓有公共點(diǎn)解決即可.【詳解】橢圓中:,設(shè)則,則,,令,則它對(duì)應(yīng)直線由整理得由判別式解得即,則的最小值為故選:A11、C【解析】設(shè)出圓的標(biāo)準(zhǔn)方程,將已知點(diǎn)的坐標(biāo)代入,解方程組即可.【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,將坐標(biāo)代入得:,解得,故圓的方程為,故選:C.12、D【解析】由題意可得兩點(diǎn)的坐標(biāo)滿足圓,然后由圓的性質(zhì)可得當(dāng)時(shí),弦長(zhǎng)最小,當(dāng)過點(diǎn)時(shí),弦長(zhǎng)最長(zhǎng),再根據(jù)向量數(shù)量積的運(yùn)算律求解即可【詳解】設(shè)點(diǎn),則以A,B為圓心,2為半徑的兩圓方程分別為和,因?yàn)閮蓤A過,所以和,所以兩點(diǎn)的坐標(biāo)滿足圓,因?yàn)辄c(diǎn)與不重合的點(diǎn)A,B共線,所以為圓的一條弦,所以當(dāng)弦長(zhǎng)最小時(shí),,因?yàn)?,半徑?,所以弦長(zhǎng)的最小值為,當(dāng)過點(diǎn)時(shí),弦長(zhǎng)最長(zhǎng)為4,因?yàn)?,所以?dāng)弦長(zhǎng)最小時(shí),的最大值為,當(dāng)弦長(zhǎng)最大時(shí),的最小值為,所以的取值范圍為,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用轉(zhuǎn)化法,根據(jù)線面平行的性質(zhì),結(jié)合三棱錐的體積等積性進(jìn)行求解即可.【詳解】設(shè)是的中點(diǎn),連接,因?yàn)槭堑闹悬c(diǎn),所以,因?yàn)槠矫?,平面,所以平面,因此點(diǎn)到平面的距離等于點(diǎn)到平面的距離,設(shè)為,因?yàn)槠矫妫?,,于是有,底面為矩形,所以有,,因?yàn)槠矫?,所以,于是有:,由余弦定理可知:cos∠PEC=所以,因此,,因?yàn)?,所以,故答案為?4、【解析】根據(jù)命題的否定與原命題真假性相反,即可得到,為真命題,則,從而求出參數(shù)的取值范圍;【詳解】解:因?yàn)槊}“,”為假命題,所以命題“,”為真命題,所以,解得;故答案:15、6【解析】根據(jù)拋物線的定義把的長(zhǎng)轉(zhuǎn)化為到準(zhǔn)線的距離為,進(jìn)而數(shù)形結(jié)合求出最小值.【詳解】易知為拋物線的焦點(diǎn),設(shè)到準(zhǔn)線的距離為,則,而的最小值為到準(zhǔn)線的距離,故的最小值為.故答案為:616、2【解析】由共線向量得,解方程即可.【詳解】因?yàn)?,所以,解?故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)與相切;(2)【解析】(1)求出圓C的圓心坐標(biāo),半徑和直線l的方程,根據(jù)圓心到直線的距離即可判斷直線與圓的位置關(guān)系;(2)圓與圓的方程相減,可求出公共弦所在的直線方程,然后根據(jù)圓M的圓心到公共弦所在直線的距離及圓M的半徑即可求出公共弦長(zhǎng).【小問1詳解】由圓,可得,所以圓心為,半徑,直線的方程為,即因?yàn)閳A心到的距離為,所以與相切【小問2詳解】聯(lián)立方程可得,作差可得,即,即公共弦所在直線的方程為易知圓的半徑,圓心到直線的距離為,則公共弦長(zhǎng)18、(1)(2)證明見解析,公共弦長(zhǎng)為【解析】(1)根據(jù)切線長(zhǎng)公式計(jì)算即可得到,然后代入可得圓的方程.(2)聯(lián)立兩圓的方程作差可得直線的方程為,然后利用圓的弦長(zhǎng)公式計(jì)算即可.【小問1詳解】圓的標(biāo)準(zhǔn)方程為,所以圓心為,半徑.由勾股定理可得,解得.所以圓的標(biāo)準(zhǔn)方程為.【小問2詳解】由題意得圓的圓心,半徑,圓的圓心,半徑,因?yàn)?,,所以圓和圓相交.設(shè)兩圓相交于,兩點(diǎn),則兩圓的方程相減得直線的方程為,圓心到直線的距離.所以,所以兩圓的公共弦長(zhǎng)為.19、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,求出相關(guān)各點(diǎn)坐標(biāo),求出,利用向量的夾角公式求得答案;(2)求出平面平面和平面的一個(gè)法向量,利用向量夾角公式求得答案.【小問1詳解】以為正交基底,建立如圖所示的空間直角坐標(biāo)系,則,,所以,所以直線所成角的余弦值為;【小問2詳解】設(shè)為平面的一個(gè)法向量,,則m?,同理,則,可取平面的一個(gè)法向量為,則,由圖可知二面角為銳角,所以二面角的余弦值為.20、(1)A(1,7),(2)【解析】(1)與的的交點(diǎn)為點(diǎn)D,與的的交點(diǎn)為點(diǎn)A,聯(lián)立解方程即可得出結(jié)果.(2)設(shè)圓P的圓心P為,由,,計(jì)算求解即可得出點(diǎn)坐標(biāo),由求得半徑,進(jìn)而可得出圓的方程.【小問1詳解】由題可得:與的的交點(diǎn)為點(diǎn)D,故由,解得:,故與的的交點(diǎn)為點(diǎn)A,,解得:,故A(1,7)【小問2詳解】設(shè)圓P的圓心P為,由與圓相切于點(diǎn)A,且的斜率為,則即,即,①又圓P為的外接圓,則BC為圓P的弦,又邊BC所在直線的科率為,故根據(jù)垂徑定理,有進(jìn)而,即②,聯(lián)立①②,解得:,即故,則圓P的方程為:.21、(1)(2)(3)y=【解析】(1)由導(dǎo)數(shù)的運(yùn)算法則求解即可;(2)利用導(dǎo)函數(shù)計(jì)算即可;(3)由導(dǎo)數(shù)的幾何意義得出切線方程.【小問1詳解】【小問2詳解】【小問3詳解】當(dāng)時(shí),f(x)=0,則切點(diǎn)為所以切線方程是,即y=22、(1)(2)不存在,理由見解析【解析】(1)利用垂直關(guān)系,以點(diǎn)為原點(diǎn),建立空間直角坐標(biāo)系,分別求平面和平面的法向量和,利用公式,即可求解;(2)若滿足條件,,利用向量的坐標(biāo)表示,判斷是否存在點(diǎn)滿足.【小問1詳解】∵,E為BD的中點(diǎn)∴CE⊥BD,又∵平面⊥平面ABD,平面平面,⊥平面,∴⊥平面ABD,如圖以E原點(diǎn),分別以EB、AE、EC′所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系,則B(1,0,0),A(0,-,0),D(-1,0,0),F(xiàn)(0,-,2),(0,0,),∴=(-1,-,2),=(-1,0,),=(1,,0),設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年國家電網(wǎng)招聘之法學(xué)類題庫及參考答案(研優(yōu)卷)
- 2025年秋季學(xué)期二年級(jí)語文教學(xué)工作計(jì)劃范文
- 2025幼兒園師徒結(jié)對(duì)計(jì)劃
- Unit 8 Talent show Lesson 2 Unit 8 Talent show Lesson 2 He's thin,but he's strong(說課稿)-小學(xué)英語四年級(jí)下冊(cè)北師大版
- 九年級(jí)歷史下冊(cè)說課稿2024~2025學(xué)年統(tǒng)編版九年級(jí)歷史下冊(cè)
- 小學(xué)期末六年級(jí)英語試卷分析報(bào)告
- 2025年衛(wèi)生保健工作計(jì)劃
- 2025年小學(xué)教研室下半年工作計(jì)劃
- 2025年寒假小學(xué)田徑隊(duì)冬訓(xùn)計(jì)劃例文
- 2025年高一年級(jí)生物教學(xué)計(jì)劃
- 滯銷風(fēng)險(xiǎn)管理制度內(nèi)容
- 關(guān)于物業(yè)服務(wù)意識(shí)的培訓(xùn)
- JJF 2184-2025電子計(jì)價(jià)秤型式評(píng)價(jià)大綱(試行)
- 排污許可證辦理合同1(2025年)
- GB/T 44890-2024行政許可工作規(guī)范
- 上??颇恳豢荚囶}庫參考資料1500題-上海市地方題庫-0
- 【7地XJ期末】安徽省宣城市寧國市2023-2024學(xué)年七年級(jí)上學(xué)期期末考試地理試題(含解析)
- 設(shè)備操作、保養(yǎng)和維修規(guī)定(4篇)
- 2025年度日歷臺(tái)歷黃歷模板
- 醫(yī)療行業(yè)十四五規(guī)劃
- 施工臨建布置方案
評(píng)論
0/150
提交評(píng)論