北師大版七年級下第二章相交線與平行線全章教案_第1頁
北師大版七年級下第二章相交線與平行線全章教案_第2頁
北師大版七年級下第二章相交線與平行線全章教案_第3頁
北師大版七年級下第二章相交線與平行線全章教案_第4頁
北師大版七年級下第二章相交線與平行線全章教案_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第二章相交線及平行線

課題

1、兩條直線的位置關(guān)系(第1課時)

1.學(xué)問及技能:在詳細(xì)情境中理解相交線、平行線、

補角、余角、對頂角的定義,知道同角或等角的余角相等、

同角或等角的補角相等、對頂角相等,并能解決一些實際問

教題。

學(xué)2.過程及方法:經(jīng)驗操作、視察、猜測、溝通、推

目理等獲得信息的過程,進(jìn)一步開展空間觀念、推理實力

標(biāo)和有條理表達(dá)的實力。

3.情感及看法:激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的愛好,相識到現(xiàn)

實生活中蘊含著大量的數(shù)量和圖形的有關(guān)問題,這些問題可

以抽象成數(shù)學(xué)問題,用數(shù)學(xué)方法予以解決°

教學(xué)重、難1.

點2.

教學(xué)過程

可根據(jù)學(xué)生

教學(xué)內(nèi)容實際增減內(nèi)

第一環(huán)節(jié)走進(jìn)生活引入課題

活動內(nèi)容一:兩條直線的位置關(guān)系

1.穩(wěn)固練習(xí):教師展示下列圖片,學(xué)生快速答復(fù):

2.1—12.1—2

結(jié)論:1.一般地,在同一平面內(nèi),兩條直線的位置關(guān)系有兩

種:___和.

2.定義分別為:o

問題1:在2.1—1中,直線m和n的關(guān)系是;a和

b是;

a和n是o

問題2:在2,1—2你能提出哪些問題?

第二環(huán)節(jié)動手理論探究新知

動手理論一

2

43

1

問題1:視察2.1—4:N1和N2的位置.........、

智叔系?為什么??力就合作溝通,嘗備博君己的

語言描繪對頂角的定義。

問題2:剪子可以看成圖2.1-4,那么剪子在剪東西的過程

中,N1和N2還保持相等嗎?N3和N4呢?你有何

結(jié)論?

3:下列各圖中,N1和42是對頂角的是(

問題4:如圖2.1—6所示,有一個破損的扇形零件,利用圖

中的量角器可防一

①1.請畫出兩個角,使他們的和為直角。%

能說出所量角是2.請畫出兩個角,使它們的和為平角。

3.小組溝通畫法,互相點評。

動手理論二4.用自己的語言描繪補角余角的定義。

留意:互余與互補是指兩

個角之間的數(shù)量關(guān)系,與

它們的位置無關(guān)。

補角定義:一般地,假如兩個角的和是180°,那么稱這兩個

角互為補角(supplementaryangle)

余角定義:

假如兩個角的和是90°,那么稱這兩個角互為余角

(complementaryangle)

動手理論三

打臺球時,選擇適當(dāng)?shù)姆较?用白球擊打紅球,反彈后的紅

球會干脆入袋,此時NkN2,將圖2.1*—?2。一8,

ON及DC交于點0,ZD0N=ZC0N=90°,/人;

B

N

2.1—8

2.1—7

小組合作溝通,解決下列問題:在圖2,Eir4一--------Yr

問題1:哪些角互為補角?哪些角互為有角或者等角的余角相等。

問題2:N3及N4有什么關(guān)系?為什?一同角或者等角的補角相等。

問題3:NAOC及NBOD有什么關(guān)系?朔"------------

你還能得到哪些結(jié)論?

第三環(huán)節(jié)

問題1:?.因為Nl+N2=900,N2+N3=90°,所以N1=,

理由是.

②因為Nl+N2=180°,Z2+Z3=180°,所以N

1=—,理由是.

問題2:

用你手中的三角板,畫一個直角三角形,如倒2.1—9.則NA

問題1:如圖2.1—11已知:直線AB及CD交于點0,

NE0D=90°,答復(fù)下列問題:

1.NAOE的余角是_________;補角是_____________o

2.ZAOC的余角是________;補角是_________;對頂角

是________O

問題2:如圖2.1—12,點0在直線AB上,NDOC和NBOE

都等于90°.

請找出圖中互余的角、互補的角、相等的角,并說明理由。

先獨立探究,再小組溝通。

第五環(huán)節(jié)學(xué)有所思反響穩(wěn)固

歸納總結(jié):

1.你學(xué)到了哪些學(xué)問點、?你學(xué)到了哪些方法?

2.你還有哪些困惑?

第六環(huán)節(jié)布置作業(yè)實力延長

習(xí)題2.1第1,2,3,4,5題

學(xué)

課題1、兩條直線的位置關(guān)系(第2課時)

教L學(xué)問及技能:會用符號表示兩直線垂直,并能借助三角板、

學(xué)直尺和方格紙畫垂線;通過折紙、動手操作等活動探究歸納垂直

目的有關(guān)性質(zhì),會進(jìn)展簡潔的應(yīng)用;初步嘗試進(jìn)展簡潔的推理。

標(biāo)2.過程及方法:經(jīng)驗從生活中提煉、動手操作、視察溝通、

猜測驗證、簡潔說理等活動,進(jìn)一步開展學(xué)生的空間觀念、推理

實力和有條理表達(dá)的實力。擅長舉一反三,學(xué)會運用類比、數(shù)形

結(jié)合等思想方法解決新學(xué)問。

3.情感及看法:激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的愛好,體會“數(shù)學(xué)來源

于生活反之又效勞于生活”的道理,在解決實際問題的過程中理

解數(shù)學(xué)的價值,通過“簡潔說理”體會數(shù)學(xué)的抽象性、嚴(yán)謹(jǐn)性。

教學(xué)L重點:兩條直線互相垂直的一些性質(zhì)。

重、難2.難點:能利用這些性質(zhì)解決簡潔的問題。

教學(xué)過程

可根據(jù)學(xué)生

教學(xué)內(nèi)容實際增減內(nèi)

第一環(huán)節(jié)走進(jìn)生活引入課題

2.請每位同學(xué)提早搜集有關(guān)“兩條直線的位置關(guān)系”的圖片,

提煉出數(shù)學(xué)圖形,重點關(guān)注有關(guān)“垂直”的內(nèi)容,然后小

組內(nèi)溝通資料,進(jìn)展合理分類、整理。

3.教師提早進(jìn)展挑選,捕獲出有代表性的題目,課堂上由學(xué)

°O

生本人主講,最終概括出有關(guān)結(jié)論。C復(fù)習(xí)兩條

口的位置關(guān)

4.穩(wěn)固練習(xí):教師展示下列圖片,學(xué)生快速答復(fù):

問題:L視察下面三個圖形,你能找出其中相交的直線嗎?

他們有什么特殊的位置關(guān)系?

2.你懷能樨出哪叱問題?.QI

歸納總結(jié)

兩條直線相交成四個角,假如有一個角是直角,那么稱

這兩條直線互相垂直(perpendicular),其中的一條直線叫

做另一條直線的垂線。它們的交點叫做垂足。通常用

工具1:你能借助三角尺或者量角器,在一張白紙上畫出兩

條互相垂直的直線嗎?

工具2:假如只有直尺,你能在方格紙上畫出兩條互相垂直

的直線嗎?

說出你的畫法和理由.

工具3:你能用折紙的方法折出互相垂直的直線嗎,試試看

吧!請說明理由。

_■__________________O____________Q___________D________LI/

動手畫一畫2:

問題L請畫出直線m和點A,你有幾種畫法?

問題2:過點A畫直線m的垂線,你能畫出多少條?

請用你自己的語言概括你的發(fā)現(xiàn)。

__________________________________________________7

歸納結(jié)論:

L點A和直線m的位置關(guān)系有兩種:點A可能在直線m上,

也可能在直線m外。

2.平面內(nèi),過一座有且只有二條直線及已知直線垂直…

y動手畫一畫工請畫出直線/和/外一點p

做PO_L/,0是垂足,在直線1上取點A,B,C,

比較線段PO、PA、PB、PC的長短,你發(fā)現(xiàn)了什么?

A1直線外一點與直線上)

//\(各點連接的所有線恩)

//\《理,垂線段最應(yīng);”

/iS\/苞遼,

第三環(huán)節(jié)學(xué)以致用,步步為營

請動手畫一畫四

如圖:一輛汽車在直線形的馬路上由A向B行駛,M、N分別

是位于馬路AB兩側(cè)的兩所學(xué)校。

問題1:汽車行駛時,會對馬路兩旁的學(xué)校造成肯定的噪音

影響。當(dāng)汽車行駛到何處時,分別對兩個學(xué)校影響最大?在

圖中標(biāo)出來。

問題2:當(dāng)汽車由A向B行駛時,在哪一段上對兩個學(xué)校影

響越來越大?越來越小?

問題3:在哪一段對M學(xué)校影響漸漸減小而對N學(xué)校影響漸

漸增大?(用文字表達(dá))

AB

N

第四環(huán)節(jié)綜合應(yīng)用,開闊視野

問題1:體育課上教師是怎樣測量跳遠(yuǎn)成果的?能說說說其

中的道理嗎?及同伴溝通.

問題2如圖2.1-5已知NACB=90°,即直線AC—BC;若

BC=4cm,AC=3cm,AB=5cm,那么點B到直線AC

的間隔等于,點A到直線BC的間隔等

于,A、B兩點間的間隔等于o

你能求出點C到AB的間隔嗎?你是怎樣做的?小

組合作溝通.

問題3:如圖2.1—6,點C在直線AB上,過點C引兩條射

線CE、CD,且NACE=32°,ZDCB=58°,則CE、CD有何位

置關(guān)系關(guān)系?為什么?

第五環(huán)節(jié)學(xué)有所思反響穩(wěn)固

活動內(nèi)容:

你學(xué)到了哪些學(xué)問點?你學(xué)到了哪些方法?你還有哪些困

惑?

第六環(huán)節(jié)布置作業(yè)實力延長

根底題:1.書P45頁習(xí)題2.2第1,2,3題

進(jìn)步題:2.請學(xué)有余力的同學(xué)實行合理的方式,搜集整理及

本節(jié)課有關(guān)的“好題”,被選中的同學(xué)下節(jié)課為全班展示。

學(xué)

課題2、探究直線平行的條件(第1課時)

教1.學(xué)問及技能:經(jīng)驗探究直線平行條件的過程,駕馭利用同

學(xué)位角相等判別直線平行的結(jié)論,并能解決一些問題;會識別由“三

目線八角”構(gòu)成的同位角,會用三角尺過己知直線外一點畫這條直

標(biāo)線的平行線。

2.過程及方法:經(jīng)驗視察、操作、想象、推理、溝通等活動,

體會利用操作、歸納獲得數(shù)學(xué)結(jié)論的過程,進(jìn)一步開展空間想象、

推理實力和有條理表達(dá)的實力。

3.情感看法及價值觀:使學(xué)生在主動參及探究、溝通的數(shù)學(xué)

活動中,體驗數(shù)學(xué)及實際生活的親密聯(lián)絡(luò),激發(fā)學(xué)生的求知欲,

感受及別人合作的重要性。

教學(xué)L重點:會認(rèn)各種圖形下的同位角,并駕馭直線平行的條件

重、難是“同位角相等,兩直線平行二

點2?難點:推斷兩直線平行的說理過程。

教學(xué)過程

可根據(jù)學(xué)

教學(xué)內(nèi)容生實際增

減內(nèi)容

第一環(huán)節(jié):奇妙設(shè)疑,復(fù)習(xí)引入

活動內(nèi)容:教師通過設(shè)置問題串,層層設(shè)疑,在引導(dǎo)學(xué)生思

索、層層釋疑的根底上,既復(fù)習(xí)舊知,做好新知學(xué)習(xí)的鋪墊,

同時也不斷激活學(xué)生思維、生成新問題,引起認(rèn)知沖突,從

而自然引入新課。

問題1:在同一平面內(nèi)兩條直線的位置關(guān)系有幾種?分別是

什么?

學(xué)生很簡潔答復(fù)出“在同一平面內(nèi)兩條直線的位置關(guān)系有兩

種,分別是相交和平行”,再進(jìn)一步針對相交和平行分別提出

問題2、3o

問題2:如圖,兩條直線相交所構(gòu)成的四個角中分別有何關(guān)

系?

借助兩條直線相交的根本圖形復(fù)習(xí)“

探究“三線八角”

的關(guān)系奠定根底。

問題3:什么叫兩條直線平行?

復(fù)習(xí)平行線的定義:在同一平面內(nèi),不相交的兩條直線叫做

平行線。

問題4:視察下而每幅圖中的直線a,b,它們分別平行嗎?你

能驗證嗎?

三組直線看上去好像不平行,其實它們分別都是平行的,

這是由于背景造成的視覺誤差,所以根據(jù)平行線的定義僅憑

視察來推斷直線的平行關(guān)系是不夠的,這就須要進(jìn)一步尋求

證據(jù),本節(jié)課教師將和同學(xué)們一起來一一探究直線平行的條

件,由此引入新課。

第二環(huán)節(jié):聯(lián)絡(luò)實際,主動探究

活動內(nèi)容:1.引入實際問題:如課本彩圖,裝修工人正在向

墻上釘木條。假如木條b及墻壁邊緣垂直,那么木條a及墻

壁邊緣所夾角是多少度時,才能使木條a及木條b平行?學(xué)

生根據(jù)自己的生活閱歷自然會得到:木條a也及墻壁邊緣垂

直時,才能使木條a及木條b平行。在此根底上提出兩個問

題:

問題1:實際問題中在推斷兩根木條平行時,借助了墻壁作

為參照,你能將上述問題抽象為數(shù)學(xué)問題嗎?試著畫出圖形,

并結(jié)合圖形說明。

學(xué)生答復(fù):如圖,把墻壁看作直線c,直線b及直線c垂直時,

只有當(dāng)直線a也及直線c垂直時,力}平行于直

線bo卜F

-----b

-----a

問題2:

1.圖中的直線b及直線c不垂直,直線a應(yīng)滿意什么條件才

能及直線b平行呢?請你利用教具親自動手操作。

做一做:利用紙條和圖釘自己制作學(xué)具,如圖,三根紙條相

交成Nl,Z2,固定紙條b,c,轉(zhuǎn)動紙條a,在操作的過程中

讓學(xué)生視察N2的變更以及它及N1的關(guān)系,你發(fā)覺紙條a及

紙條b的位置關(guān)系發(fā)生了什么變更?紙條a何時及紙條b平

行?變更圖中N1的大小再試一試,及同學(xué)溝通你的發(fā)覺。

引導(dǎo)學(xué)生發(fā)覺,當(dāng)圖中的N2滿意及N1相等時,紙條a

及紙條b平行。再利用課件展示,加深學(xué)生的相識。

2.由N1及N2的位置關(guān)系引出對“三線八角”的相識和同

位角的概念。

如圖,直線AB,CD被直線1所截,構(gòu)成了八個角,具有N1

及N2

這樣位置關(guān)系的角,可以看作是在被截直線四回二鰥/在截

C7^5------

線的同一旁,A---4^-----上

曠6

相對位置是一樣的,我們把這樣的角稱為同位角。

問題1:圖中還有其他的同位角嗎?

問題2:這些角相等也可以得出兩直線平行嗎?

3.綜上探究,引導(dǎo)學(xué)生歸納出兩直線平行的條件:同位角相

等,兩直線平行。

第三環(huán)節(jié):變式訓(xùn)練,嫻熟技能:

活動內(nèi)容::才:

C■/:?e

練習(xí)1指出下面點陣中互相平行的線段,并說匐理由有

(點陣中相鄰的四個點構(gòu)成正方形)。

練習(xí)2如圖,Z1=Z2=55°,N3等于多少度?直線

AB、CD平行嗎?說明你的理由。

練習(xí)3議一議:.p

~AB

議一議1

問題1:你還記得怎樣用挪動三角板的方法畫兩條平行

線嗎?你能用這種方法過已知直線AB外一點P畫它的平行線

嗎?請說出其中的道理。

問題2:分別過點C、D畫直線AB的平行線EF、GH,EF

題:

問題1:你能用一張不規(guī)則的紙(如圖)折出兩條平行的直

線嗎?

及同伴說說你的折法。

問題2:如圖(1)是一種畫平行線的工具,在畫平行線之前,

工人師傅往往要先調(diào)整一下工具,如圖2,然后畫平行線,

你能說明這種工具的用法和其中得道理嗎?(圖見教材)

2.如圖,在屋架上要加一根橫梁DE,已知N8歹\

要使DE〃BC,則NADE必需等于多少度?為虞

第五環(huán)節(jié):總結(jié)反思,布置作業(yè)

總結(jié)反思,

問題1:本節(jié)課你認(rèn)為自己解決的最好的問題是什么?

問題2:本節(jié)課你有哪些收獲?

問題3:通過今日的學(xué)習(xí),你想進(jìn)一步探究的問題是什么?

布置作業(yè)

習(xí)題2.3學(xué)問技能。

學(xué)

課題2、探究直線平行的條件(第2課時)

1.學(xué)問及技能:會識別由“三線八角”構(gòu)成的內(nèi)錯角合同旁

內(nèi)角。經(jīng)驗探究直線平行條件的過程,駕馭利用同位角相等、同

教旁內(nèi)角互補判別直線平行的結(jié)論,并能解決一些問題。

學(xué)2.過程及方法:經(jīng)驗視察、操作、想象、圖利、溝通等活動,

目體會利用操作、歸納獲得數(shù)學(xué)結(jié)論的過程,進(jìn)一步開展空間想象、

標(biāo)推理實力和有條理表達(dá)的實力。

3.情感看法及價值觀:使學(xué)生在參及探究、溝通的數(shù)學(xué)活動

中,進(jìn)一步體驗數(shù)學(xué)及實際生活的親密聯(lián)絡(luò)。

L重點:弄清內(nèi)錯角和同旁內(nèi)角的意義,會用“內(nèi)錯角相等,

教學(xué)

兩直線平行”和“同旁內(nèi)角互補,兩直線平行”。

重、難

2.難點:會用“內(nèi)錯角相等,兩直線平行”和“同旁內(nèi)角互

補,兩直線平行

教學(xué)過程

可根據(jù)學(xué)

教學(xué)內(nèi)容生實際增

減內(nèi)容

第一環(huán)節(jié):立足根底,溫故知新

活動內(nèi)容:

1.通過以下問題帶著學(xué)生在復(fù)習(xí)“三線八角”根本圖形J

和同位角的根底上,進(jìn)一步學(xué)習(xí)內(nèi)錯角和同旁內(nèi)角。J

問題1:如圖,直線a,b被直線c所截,數(shù)一數(shù)圖中有幾個

角(不含平角)?

問題2:寫出圖中的全部同位角,并用自己的語言說明什么

樣的角是同位角?

引導(dǎo)學(xué)生從角及截線及被截線的位置關(guān)系的角度來描繪同位

角。

問題3:它們具備什么關(guān)系可以推斷直線a〃b?你的根據(jù)是.rr\

什么?

問題4:圖中N3及N5,N4及N6這樣位置關(guān)系的角有什么

特點?Z3及N6,Z4及N5這樣位置關(guān)系的角呢?說說你

的理由。

由此引導(dǎo)學(xué)生概括得出內(nèi)錯角及同旁內(nèi)角的概念。

第二環(huán)節(jié):創(chuàng)設(shè)情境,提出問題

活動內(nèi)容:

1.給出實際問題:小明有一塊小畫板,他想知道它

的上下邊緣是否

平行,于是他在兩個邊緣之間畫了一條線段AB(如圖所示)。

小明只有

一個量角器,他通過測量某些角的大小就能知道這個畫板的

上下邊緣是

否平行,你知道他是怎樣做的嗎?

2.畫板上下邊緣是否平行能利用同位角來推斷嗎?假如不

能,是否可以利用其他角來推斷?請你先自主探究,再及同

伴溝通。

第三環(huán)節(jié):大膽探究,各抒己見

活動內(nèi)容:依次完成以下幾個步驟,引導(dǎo)學(xué)生從理論到理論

探究直線平行的條件

1.課本議一議:(1)內(nèi)錯角滿意什么關(guān)系時,兩直線平行?

為什么?

(2)同旁內(nèi)角滿意什么關(guān)系時,兩直線平

行?為什么?

請你先獨立思索,采納你認(rèn)為適當(dāng)?shù)姆绞絹碚f明理由,然后

再及同學(xué)溝通。

2.視察課件中的三線八角,內(nèi)錯角的變更和同旁內(nèi)角的

變更,得出結(jié)論:

內(nèi)錯角相等,兩直線平行。同旁內(nèi)角互補,兩直線

平行。

3.挑戰(zhàn)自我:你能結(jié)合圖形用推理的方式來說明陟h兩

a

個結(jié)論成立的理由嗎?―p

如圖,直線a,b被直線c所截,

當(dāng)(1)Z1=Z2,(2)Nl+N3=l即Jh說喉a〃b的理由。

第四環(huán)節(jié):剛好穩(wěn)固,深化進(jìn)步A

活動內(nèi)容:

1.做一做:三個一樣的三角尺拼接成一個圖形,a

々b

請找出圖中的一組平行線,并說明你的理由。

2.圖中各角分別滿意下列條件時,你能推斷哪兩條直

線平行嗎?

(1)Z1=Z4;(2)Z2=Z4;(3)Zl+Z3=180°

???—//―,同位角相等,兩直線平行

VZ3+Z4=180°

??,DB〃EF

VZB+Z5=180°

J//,o

第五環(huán)節(jié):歸納小結(jié),反思進(jìn)步

活動內(nèi)容:師生以談話溝通的形式對本節(jié)課所學(xué)學(xué)問進(jìn)展總

結(jié):

到目前為止,我們共學(xué)習(xí)了幾種推斷直線平行的方法?它們

之間有何區(qū)分及聯(lián)絡(luò)?

學(xué)生可用自己的語言歸納總結(jié)本節(jié)課的內(nèi)容,指導(dǎo)學(xué)生總結(jié)

本節(jié)課的學(xué)問要點:激勵學(xué)生主動發(fā)言,在總結(jié)過程中,讓

學(xué)生熟記:

①同位角相等,兩直線平行;②內(nèi)錯角相等,兩直線平行;

③同旁內(nèi)角互補,兩直線平行.

布置作業(yè):課本習(xí)題2.4

學(xué)

課題3、平行線的性質(zhì)(第1課時)

1.學(xué)問及技能:經(jīng)驗探究平行線性質(zhì)的過程,駕馭平行線的

三條性質(zhì),并能用它們進(jìn)展簡潔的推理和計算。

2.過程及方法:經(jīng)驗視察、測量、推理、溝通等活動,進(jìn)一

教步開展空間觀念,能有條理地思索和表達(dá)自己的探究過程和結(jié)果,

學(xué)從而進(jìn)一步增加分析、概括、表達(dá)實力。

目3.情感看法及價值觀:在自己獨立思索的根底上,主動參及小

標(biāo)組活動。在對平行線的性質(zhì)進(jìn)展的探討中,敢于發(fā)表自己的看法,

并從中獲益。通過學(xué)習(xí)平行線性質(zhì)和斷定直線平行條件的聯(lián)絡(luò)及

區(qū)分,讓學(xué)生懂得事物既普遍聯(lián)絡(luò)又互相區(qū)分的辯證唯物主義思

想。

L重點:使學(xué)生駕馭平行線的三特性質(zhì),并能運用它們作簡

教學(xué)

潔的推理;使學(xué)生理解平行線的性質(zhì)和斷定的區(qū)分。

重、難

2.難點:平行的三特性質(zhì),是本節(jié)的重點,也是本章的重點

之一;怎樣區(qū)分性質(zhì)和斷定,是教學(xué)中的一個難點。

教學(xué)過程

可根據(jù)學(xué)

教學(xué)內(nèi)容生實際增

減內(nèi)容

第一環(huán)節(jié):復(fù)習(xí)回憶,逆向猜測;

活動內(nèi)容:復(fù)習(xí)已學(xué)過的同位角、內(nèi)錯角、b----鼻叮

同旁內(nèi)角的概念及兩直線平行的條件。

(1)因為N1=N5]已知)

所以a〃b(____________________)

(2)因為N4=N___(已知)

所以a〃b(內(nèi)錯角相等,兩直線平行)

(3)因為N4+N_____=180°(已知)

所以a〃b(____________________)

第二環(huán)節(jié):動手操作、探求新知;

反過來,假如兩條直線平行,那么同位角、內(nèi)錯角、司旁

內(nèi)角又各有什么樣的關(guān)系呢?這是C、

我們這節(jié)課要探究的問題。"-—

活動內(nèi)容:課本52頁的“探究”局h令國一

部。如圖,直線a及直線b平行。

(1)測量同位角N1和N5的大小,它們有什么關(guān)系?圖中

還有其他同位角嗎?它們的大小有什么關(guān)系?

(2)圖中有幾對內(nèi)錯角?它們的大小有什么關(guān)系?為什么?

(3)圖中有幾對同旁內(nèi)角?它們的大小有什么關(guān)系?為什

么?

(4)換另一組平行線試試,你能得到一樣的結(jié)論嗎?

這是本節(jié)課的主體局部,詳細(xì)教學(xué)時,可把該探究細(xì)分成如

下幾個活動:

活動1、先測量角的度數(shù),把結(jié)果填入表內(nèi).

角Z1Z2Z3Z4Z5Z6Z7Z8

度數(shù)

活動2、根據(jù)測量所得的結(jié)果作出猜測:

同位角具有怎樣的數(shù)量關(guān)系內(nèi)錯角具有怎樣的數(shù)量關(guān)系司旁

內(nèi)角呢?

活動3、驗證揣測.

另外畫一組平行線被第三條直線所截,同樣測量并計算各角

的度數(shù),檢驗剛剛的猜測是否成立假如直線a及b不平行,猜

測還成立嗎

活動4、歸納平行線的性質(zhì)

性質(zhì)1:兩條平行直線被第三條直線所截,同位角相等。

簡稱為兩直線平行,同位角相等.

性質(zhì)2:兩條平行直線被第三條直線所截,內(nèi)錯角相等。

簡稱為兩直線平行,內(nèi)錯角相等.

性質(zhì)3:兩條平行直線按被第三條線所截,同旁內(nèi)角互補。

簡稱為兩直線平行,同旁內(nèi)角互補.

活動5、運用及推理

你能根據(jù)性質(zhì)1,說出性質(zhì)2,°°、_________

性質(zhì)3成立的理由嗎

因為a〃b.京國―

所以N1=N5()

又因為(對頂角相等)

所以N4=N5,

類似地,對于性質(zhì)3,你能說出道理嗎

第三環(huán)節(jié):穩(wěn)固新知,敏捷運用;

活動內(nèi)容:

1.如圖所示,AB〃CD,AC〃BD,分別找出及

N1相等或互補的角。

2.如圖是一塊梯形鐵片的殘缺局部,量得NA=65°,Z

B=80°,梯形另外兩個角分別是多少度

3.如圖,一條馬路兩次拐彎后,和原來的方向一樣,

第一次拐的角NB是130°,第c

二次拐的角NC是多少度?

第四環(huán)節(jié):比照學(xué)習(xí),加深理解;

活動內(nèi)容:通過剛剛的應(yīng)用,大家能談一談

今日學(xué)習(xí)的平行線的性質(zhì)和上一節(jié)斷定直線平行的條件有什

么不同么?請大家填寫下面的表格,加以比照。

條件結(jié)論

平行線

的性質(zhì)

斷定平

行的條

師生共同總結(jié):曲占r

性質(zhì)

<,yAI同位角相等

條件I

兩直線平行內(nèi)錯角相等

同旁內(nèi)角互補

歸納:條件:角的關(guān)系=線的關(guān)

性質(zhì):線的關(guān)系=角的關(guān)系

第五個環(huán)節(jié):聯(lián)絡(luò)拓廣,綜合應(yīng)用

活動內(nèi)容:

1.如圖,已知D是AB上的一點,E是AC上的一點,ZADE

=60°,ZB=60°,ZAED=40°.

(1)DE和BC平行嗎?為什么?

(2)NC是多少度?為什么?

2.如圖2-18,一束平行光線AB及8

DE射向一個程度鏡面后被

反射,此時

Z1=Z2,Z3=Z4.

(1)N1及N3的大小有

什么關(guān)系?N2及24呢?

(2)反射光線BC及EF也平行嗎?

第六小節(jié):課堂小結(jié),布置作業(yè)。

活動內(nèi)容:師生溝通,共同總結(jié)本節(jié)課所學(xué)的學(xué)問,并有針

對性的布置作業(yè)。

1.本節(jié)課你有哪些收獲?

2.在本節(jié)課的學(xué)習(xí)中,你還存在哪些疑問?

學(xué)

課題3、平行線的性質(zhì)(第2課時)

1.學(xué)問及技能:嫻熟應(yīng)用平行線的性質(zhì)和判別直線平行的條

件解決問題;漸漸理解兒何推理的要領(lǐng),分清推理中“因為”、“所

教以”表達(dá)的意義,從而初步學(xué)會簡潔的幾何推理。

學(xué)2.過程及方法:經(jīng)驗視察、探討,推理、歸納等活動,進(jìn)一

目步開展空間觀念,培育推理實力和有條理表達(dá)的實力。

標(biāo)3.情感看法及價值觀:使學(xué)生在主動參及探究、溝通、推理、

歸納等數(shù)學(xué)活動中,進(jìn)一步體會數(shù)學(xué)的嚴(yán)密性,進(jìn)步自己的邏輯

思維實力。

教學(xué)L重點:兩條直線平行的條件和性質(zhì)的運用。

重、難2.難點:利用條件和性質(zhì)進(jìn)展推理斷定的書寫。

教學(xué)過程

可根據(jù)學(xué)

教學(xué)內(nèi)容生實際增

減內(nèi)容

第一環(huán)節(jié):復(fù)習(xí)回憶,夯實根底

活動內(nèi)容:通過以下問題帶著學(xué)生復(fù)習(xí)平行線的性質(zhì)和判別

直線平行的條件。

問題1:平行線的性質(zhì)有哪幾條?

問題2:判別直線平行的條件有哪幾個?你如今一手有幾

個斷定直線平行的方法?不-a

問題3:在應(yīng)用二者時應(yīng)留意什么問題?b

第二環(huán)節(jié):層層遞進(jìn),推理論證

活動內(nèi)容:

問題1:如圖2.3—1,直線a,b被直線c所截,°。

2.3-1

(1)當(dāng)N1=N2時,你能結(jié)合圖形用推理的方可

來說明a〃b嗎?//

(2)若N2+N3=180°呢?Jz3』£

O

問題2:如圖2.3—2:

(1)若N1=Z2,可以斷定哪兩條直線平行?根據(jù)是什

么?

(2)若N2=NM,可以斷定哪兩條直線平行?根據(jù)是什么?

(3)若N2+N3=180°,可以斷定哪兩條直線平行?根

據(jù)是什么?

問題3:如圖2.3—3,AB〃CD,假如"‘二飛'EF及

AB平行嗎?說說你的理由.7~~^\

A2.3-B

3

第三環(huán)節(jié):獨立探究,步驟標(biāo)準(zhǔn)//

活動內(nèi)容:2j3/A

問題1:如圖2.3—4,已知直線a/7b,///

2.3

直線

c〃d,Z1=107°,求Z2,Z3的度數(shù).

問題2:如圖2.3—5,AE〃CD,若N1=37°,

ZD=54°,求Z2和NBAE的度數(shù).

第四環(huán)節(jié):剛好穩(wěn)固,深化進(jìn)步

活動內(nèi)容:

問題1:如圖2.3—6,選擇適宜的內(nèi)容填空。

(1)因為AB〃CD

所以N1=N2()

(2)因為Z3=Z1

所以—〃_(同位角相等,兩直線平行)

(3)因為N1+Z=180°

所以AB〃CD()

問題2:如圖2.3—7,Z1=Z3,那么,N1和N2的大小有

何關(guān)系?

Z1和N4的大小有何關(guān)系?為什么?由此你得到什么

結(jié)論?

c

問題3:如圖2.3—8,平行直線AB,CD,

C

被直線EF所截,分別交直線AB,CD于點2/

BA7,c

G,MoGH和MN分別是NEGB和NEMD的角八/

平分線。問:GH和MN平行嗎?S,?3_/口

第五環(huán)節(jié):歸納小結(jié),反思進(jìn)步

活動內(nèi)容:本節(jié)課是對我們上節(jié)課所學(xué))

學(xué)問的應(yīng)用和進(jìn)步。那么A一B

1、本節(jié)課主要應(yīng)用了哪些學(xué)問?「

/MD

2、在應(yīng)用它們時,你認(rèn)為應(yīng)當(dāng)留意/2.3—

哪些問題?

3、在寫幾何推理的過程中,因為和所以分別表達(dá)的意義

是什么?根據(jù)是什么?

布置作業(yè):課本習(xí)題2.6.

學(xué)

課題4、用尺規(guī)作角

教1.學(xué)問及技能:能根據(jù)作圖語言來完成作圖動作,

學(xué)能用尺規(guī)作一個角等于已知角,并理解它在尺規(guī)作圖中

目的簡潔應(yīng)用;能利用尺規(guī)作角的和、差、倍;可以通過

標(biāo)尺規(guī)設(shè)計并繪制簡潔的圖案。

2.過程及方法:在尺規(guī)作圖過程當(dāng)中,積累數(shù)學(xué)

活動閱歷,培育動手實力和邏輯分析實力。

3.情感看法及價值觀:經(jīng)驗尺規(guī)作角的過程,進(jìn)一

步培育學(xué)生的動手操作實力,增加學(xué)生的數(shù)學(xué)應(yīng)用和探

討意識。

L重點:能按作圖語言來完成作圖動作,能用尺規(guī)

作一個角等于已知角。

教學(xué)重、難點

2.難點:作圖步驟和作圖語言的敘述,及作角的綜

合應(yīng)用。

教學(xué)過程

可根據(jù)

學(xué)生實

教學(xué)內(nèi)容

際增減

內(nèi)容

第一環(huán)節(jié)情境引入探究發(fā)覺

活動內(nèi)容:如圖2—14,要在長方形木板上截一個平行四邊

形,使它的一組對邊在長方形木板的邊緣上,另一組對邊中的一

條邊為ABo

B

nAaC

(1)請過C點畫出及AB平行的另一邊。

(2)假如你只有一個圓規(guī)和一把沒有刻度的直尺,你能解

決這個問題嗎?

第二環(huán)節(jié)用尺規(guī)作一個角等于已知角

活動內(nèi)容:1.己知:ZAOBo

求作:NA'O'B'使NA'O'B'=ZAOBo

作法及示范:

作法示范

(1)作射線

O'A,

0,A,

(2)以點0

為圓心,以

TcA0*A,

隨意長

為半徑

畫弧,

交0A于

點C,交

0B

于點D;

0,B,oZ

A'O'B'

就是

所求作的

角。

2.請用沒有刻度的直尺和圓規(guī),在課本的圖2T4中,過點

C作力6的平行線.

第三環(huán)節(jié)角的和、差、倍

活動內(nèi)容:

1.已知:ZAOBo

利用尺規(guī)作:NA'O'B',使NA'O'B'=2ZAOBo

2.已知:Zl,Z2

求作:ZA0B,使得N'AOB=Z1+Z2

3.已知:Zl,Z2

求作:ZA0B,使得/AOB=Z1-Z2

第四環(huán)節(jié)課堂小結(jié)

活動內(nèi)容:1.用尺規(guī)作一個角等于已知角。

2.用尺規(guī)作一個角等于已知角的和、差、倍。

3.借助于已經(jīng)學(xué)的用尺規(guī)作線段和角來設(shè)計圖案。

第五環(huán)節(jié)布置作業(yè)

教材習(xí)題2.6。

第六環(huán)節(jié)圖案設(shè)計

活動內(nèi)容:用尺規(guī)作下面的圖形:

教學(xué)

反思

課題第二章《相交線及平行線》復(fù)習(xí)課

教1.學(xué)問及技能:經(jīng)驗對本章所學(xué)學(xué)問回憶及思索

學(xué)的過程,將本章內(nèi)容條理化,系統(tǒng)化;在豐富的情景中,

目抽象出平行線、相交線等根本幾何模型,從而進(jìn)一步熟

標(biāo)識和駕馭幾何語言,能用語言說明幾何圖形。

2.過程及方法:經(jīng)驗把現(xiàn)實物體抽象成幾何對象

(點、線、面等)的數(shù)學(xué)化過程;在探究說理過程中,

熬煉學(xué)生的語言表達(dá)實力以及邏輯思維實力;通過多個

角度去思索問題,既進(jìn)步學(xué)生的識圖實力,又可以開闊

思維,進(jìn)步分析問題、解決問題的實力。

3.情感看法及價值觀:感受數(shù)學(xué)來源于生活又效勞

于生活,激發(fā)學(xué)習(xí)數(shù)學(xué)的樂趣;通過一題多變,一題多

解,多解歸一的練習(xí),讓學(xué)生學(xué)會挖掘題目資源,用開

展的目光看問題,視察運動中的異同,提醒學(xué)問間內(nèi)

在聯(lián)絡(luò)。

L重點:有意識的關(guān)注學(xué)習(xí)方法的駕馭,數(shù)學(xué)思想

的領(lǐng)悟。

教學(xué)重、難點

2.難點:讓學(xué)生能有意識地把解決特殊問題的策

略、方法遷移到解決一般問題中去。

教學(xué)過程

可根據(jù)學(xué)生

教學(xué)內(nèi)容實際增減內(nèi)

第一環(huán)節(jié):創(chuàng)設(shè)情境

活動內(nèi)容:教師提出問題:同學(xué)們相識這個標(biāo)記么?

生:(反響異樣劇烈)相識,是群眾汽車的標(biāo)記。

師:你們知道它的含義么?

(同學(xué)陷入了思索。)

一個同學(xué)舉手,有些遲疑地說:“我看它象

由三個V組成,是不是表示他們這個品牌必

勝、必勝、必勝?

教師興奮地贊揚:你真棒,跟設(shè)計師想的一樣!

(另一名同學(xué)小聲說):真的假的?我還覺得上面是V,下面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論