湖南省瀏陽一中2025屆數學高三上期末質量檢測試題含解析_第1頁
湖南省瀏陽一中2025屆數學高三上期末質量檢測試題含解析_第2頁
湖南省瀏陽一中2025屆數學高三上期末質量檢測試題含解析_第3頁
湖南省瀏陽一中2025屆數學高三上期末質量檢測試題含解析_第4頁
湖南省瀏陽一中2025屆數學高三上期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省瀏陽一中2025屆數學高三上期末質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.要得到函數的圖象,只需將函數的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位2.關于函數,有下述三個結論:①函數的一個周期為;②函數在上單調遞增;③函數的值域為.其中所有正確結論的編號是()A.①② B.② C.②③ D.③3.雙曲線的漸近線方程為()A. B.C. D.4.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.5.設,其中a,b是實數,則()A.1 B.2 C. D.6.已知正方體的棱長為1,平面與此正方體相交.對于實數,如果正方體的八個頂點中恰好有個點到平面的距離等于,那么下列結論中,一定正確的是A. B.C. D.7.若函數有且僅有一個零點,則實數的值為()A. B. C. D.8.已知集合,,且、都是全集(為實數集)的子集,則如圖所示韋恩圖中陰影部分所表示的集合為()A. B.或C. D.9.關于圓周率,數學發(fā)展史上出現過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發(fā),某同學通過下面的隨機模擬方法來估計的值:先用計算機產生個數對,其中,都是區(qū)間上的均勻隨機數,再統計,能與構成銳角三角形三邊長的數對的個數﹔最后根據統計數來估計的值.若,則的估計值為()A. B. C. D.10.已知是偶函數,在上單調遞減,,則的解集是A. B.C. D.11.將函數的圖像向右平移個單位長度,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數的圖像,若為奇函數,則的最小值為()A. B. C. D.12.已知某幾何體的三視圖如圖所示,其中正視圖與側視圖是全等的直角三角形,則該幾何體的各個面中,最大面的面積為()A.2 B.5 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,半球內有一內接正四棱錐,該四棱錐的體積為,則該半球的體積為__________.14.函數過定點________.15.已知,如果函數有三個零點,則實數的取值范圍是____________16.能說明“在數列中,若對于任意的,,則為遞增數列”為假命題的一個等差數列是______.(寫出數列的通項公式)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列的前項和為,且滿足.(Ⅰ)求數列的通項公式;(Ⅱ)證明:.18.(12分)已知數列的前n項和,是等差數列,且.(Ⅰ)求數列的通項公式;(Ⅱ)令.求數列的前n項和.19.(12分)已知函數的最小正周期是,且當時,取得最大值.(1)求的解析式;(2)作出在上的圖象(要列表).20.(12分)設函數.(Ⅰ)討論函數的單調性;(Ⅱ)如果對所有的≥0,都有≤,求的最小值;(Ⅲ)已知數列中,,且,若數列的前n項和為,求證:.21.(12分)已知函數()在定義域內有兩個不同的極值點.(1)求實數的取值范圍;(2)若有兩個不同的極值點,,且,若不等式恒成立.求正實數的取值范圍.22.(10分)如圖,四棱錐E﹣ABCD的側棱DE與四棱錐F﹣ABCD的側棱BF都與底面ABCD垂直,,//,.(1)證明://平面BCE.(2)設平面ABF與平面CDF所成的二面角為θ,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

直接根據三角函數的圖象平移規(guī)則得出正確的結論即可;【詳解】解:函數,要得到函數的圖象,只需將函數的圖象向左平移個單位.故選:D.【點睛】本題考查三角函數圖象平移的應用問題,屬于基礎題.2、C【解析】

①用周期函數的定義驗證.②當時,,,再利用單調性判斷.③根據平移變換,函數的值域等價于函數的值域,而,當時,再求值域.【詳解】因為,故①錯誤;當時,,所以,所以在上單調遞增,故②正確;函數的值域等價于函數的值域,易知,故當時,,故③正確.故選:C.【點睛】本題考查三角函數的性質,還考查推理論證能力以及分類討論思想,屬于中檔題.3、A【解析】

將雙曲線方程化為標準方程為,其漸近線方程為,化簡整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【點睛】本題主要考查了雙曲線的標準方程,雙曲線的簡單性質的應用.4、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據三視圖進行調整.5、D【解析】

根據復數相等,可得,然后根據復數模的計算,可得結果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復數模的計算,考驗計算,屬基礎題.6、B【解析】

此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個點到平面的距離為;如圖(2)恰好有4個點到平面的距離為;如圖(3)恰好有6個點到平面的距離為.所以本題答案為B.【點睛】本題以空間幾何體為載體考查點,面的位置關系,考查空間想象能力,考查了學生靈活應用知識分析解決問題的能力和知識方法的遷移能力,屬于難題.7、D【解析】

推導出函數的圖象關于直線對稱,由題意得出,進而可求得實數的值,并對的值進行檢驗,即可得出結果.【詳解】,則,,,所以,函數的圖象關于直線對稱.若函數的零點不為,則該函數的零點必成對出現,不合題意.所以,,即,解得或.①當時,令,得,作出函數與函數的圖象如下圖所示:此時,函數與函數的圖象有三個交點,不合乎題意;②當時,,,當且僅當時,等號成立,則函數有且只有一個零點.綜上所述,.故選:D.【點睛】本題考查利用函數的零點個數求參數,考查函數圖象對稱性的應用,解答的關鍵就是推導出,在求出參數后要對參數的值進行檢驗,考查分析問題和解決問題的能力,屬于中等題.8、C【解析】

根據韋恩圖可確定所表示集合為,根據一元二次不等式解法和定義域的求法可求得集合,根據補集和交集定義可求得結果.【詳解】由韋恩圖可知:陰影部分表示,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算,涉及到一元二次不等式和函數定義域的求解;關鍵是能夠根據韋恩圖確定所求集合.9、B【解析】

先利用幾何概型的概率計算公式算出,能與構成銳角三角形三邊長的概率,然后再利用隨機模擬方法得到,能與構成銳角三角形三邊長的概率,二者概率相等即可估計出.【詳解】因為,都是區(qū)間上的均勻隨機數,所以有,,若,能與構成銳角三角形三邊長,則,由幾何概型的概率計算公式知,所以.故選:B.【點睛】本題考查幾何概型的概率計算公式及運用隨機數模擬法估計概率,考查學生的基本計算能力,是一個中檔題.10、D【解析】

先由是偶函數,得到關于直線對稱;進而得出單調性,再分別討論和,即可求出結果.【詳解】因為是偶函數,所以關于直線對稱;因此,由得;又在上單調遞減,則在上單調遞增;所以,當即時,由得,所以,解得;當即時,由得,所以,解得;因此,的解集是.【點睛】本題主要考查由函數的性質解對應不等式,熟記函數的奇偶性、對稱性、單調性等性質即可,屬于??碱}型.11、C【解析】

根據三角函數的變換規(guī)則表示出,根據是奇函數,可得的取值,再求其最小值.【詳解】解:由題意知,將函數的圖像向右平移個單位長度,得,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數的圖像,,因為是奇函數,所以,解得,因為,所以的最小值為.故選:【點睛】本題考查三角函數的變換以及三角函數的性質,屬于基礎題.12、D【解析】

根據三視圖還原出幾何體,找到最大面,再求面積.【詳解】由三視圖可知,該幾何體是一個三棱錐,如圖所示,將其放在一個長方體中,并記為三棱錐.,,,故最大面的面積為.選D.【點睛】本題主要考查三視圖的識別,復雜的三視圖還原為幾何體時,一般借助長方體來實現.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意可知半球的半徑與正四棱錐的高相等,可得正四棱錐的棱與半徑的關系,進而可寫出半球的半徑與四棱錐體積的關系,進而求得結果.【詳解】設所給半球的半徑為,則四棱錐的高,則,由四棱錐的體積,半球的體積為:.【方法點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關系,或只畫內切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關系,列方程(組)求解.14、【解析】

令,,與參數無關,即可得到定點.【詳解】由指數函數的性質,可得,函數值與參數無關,所有過定點.故答案為:【點睛】此題考查函數的定點問題,關鍵在于找出自變量的取值使函數值與參數無關,熟記常見函數的定點可以節(jié)省解題時間.15、【解析】

首先把零點問題轉化為方程問題,等價于有三個零點,兩側開方,可得,即有三個零點,再運用函數的單調性結合最值即可求出參數的取值范圍.【詳解】若函數有三個零點,即零點有,顯然,則有,可得,即有三個零點,不妨令,對于,函數單調遞增,,,所以函數在區(qū)間上只有一解,對于函數,,解得,,解得,,解得,所以函數在區(qū)間上單調遞減,在區(qū)間上單調遞增,,當時,,當時,,此時函數若有兩個零點,則有,綜上可知,若函數有三個零點,則實數的取值范圍是.故答案為:【點睛】本題考查了函數零點的零點,恰當的開方,轉化為函數有零點問題,注意恰有三個零點條件的應用,根據函數的最值求解參數的范圍,屬于難題.16、答案不唯一,如【解析】

根據等差數列的性質可得到滿足條件的數列.【詳解】由題意知,不妨設,則,很明顯為遞減數列,說明原命題是假命題.所以,答案不唯一,符合條件即可.【點睛】本題考查對等差數列的概念和性質的理解,關鍵是假設出一個遞減的數列,還需檢驗是否滿足命題中的條件,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ),.(Ⅱ)見解析【解析】

(1)由,分和兩種情況,即可求得數列的通項公式;(2)由題,得,利用等比數列求和公式,即可得到本題答案.【詳解】(Ⅰ)解:由題,得當時,,得;當時,,整理,得.數列是以1為首項,2為公比的等比數列,,;(Ⅱ)證明:由(Ⅰ)知,,故.故得證.【點睛】本題主要考查根據的關系式求通項公式以及利用等比數列的前n項和公式求和并證明不等式,考查學生的運算求解能力和推理證明能力.18、(Ⅰ);(Ⅱ)【解析】試題分析:(1)先由公式求出數列的通項公式;進而列方程組求數列的首項與公差,得數列的通項公式;(2)由(1)可得,再利用“錯位相減法”求數列的前項和.試題解析:(1)由題意知當時,,當時,,所以.設數列的公差為,由,即,可解得,所以.(2)由(1)知,又,得,,兩式作差,得所以.考點1、待定系數法求等差數列的通項公式;2、利用“錯位相減法”求數列的前項和.【易錯點晴】本題主要考查待定系數法求等差數列的通項公式、利用“錯位相減法”求數列的前項和,屬于難題.“錯位相減法”求數列的前項和是重點也是難點,利用“錯位相減法”求數列的和應注意以下幾點:①掌握運用“錯位相減法”求數列的和的條件(一個等差數列與一個等比數列的積);②相減時注意最后一項的符號;③求和時注意項數別出錯;④最后結果一定不能忘記等式兩邊同時除以.19、(1);(2)見解析.【解析】

(1)根據函數的最小正周期可求出的值,由該函數的最大值可得出的值,再由,結合的取值范圍可求得的值,由此可得出函數的解析式;(2)由計算出的取值范圍,據此列表、描點、連線可得出函數在區(qū)間上的圖象.【詳解】(1)因為函數的最小正周期是,所以.又因為當時,函數取得最大值,所以,同時,得,因為,所以,所以;(2)因為,所以,列表如下:描點、連線得圖象:【點睛】本題考查正弦函數解析式的求解,同時也考查了利用五點作圖法作圖,考查分析問題與解決問題的能力,屬于中等題.20、(Ⅰ)函數在上單調遞減,在單調遞增;(Ⅱ);(Ⅲ)證明見解析.【解析】

(Ⅰ)先求出函數f(x)的導數,通過解關于導數的不等式,從而求出函數的單調區(qū)間;(Ⅱ)設g(x)=f(x)﹣ax,先求出函數g(x)的導數,通過討論a的范圍,得到函數的單調性,從而求出a的最小值;(Ⅲ)先求出數列是以為首項,1為公差的等差數列,,,問題轉化為證明:,通過換元法或數學歸納法進行證明即可.【詳解】解:(Ⅰ)f(x)的定義域為(﹣1,+∞),,當時,f′(x)<2,當時,f′(x)>2,所以函數f(x)在上單調遞減,在單調遞增.(Ⅱ)設,則,因為x≥2,故,(?。┊攁≥1時,1﹣a≤2,g′(x)≤2,所以g(x)在[2,+∞)單調遞減,而g(2)=2,所以對所有的x≥2,g(x)≤2,即f(x)≤ax;(ⅱ)當1<a<1時,2<1﹣a<1,若,則g′(x)>2,g(x)單調遞增,而g(2)=2,所以當時,g(x)>2,即f(x)>ax;(ⅲ)當a≤1時,1﹣a≥1,g′(x)>2,所以g(x)在[2,+∞)單調遞增,而g(2)=2,所以對所有的x>2,g(x)>2,即f(x)>ax;綜上,a的最小值為1.(Ⅲ)由(1﹣an+1)(1+an)=1得,an﹣an+1=an?an+1,由a1=1得,an≠2,所以,數列是以為首項,1為公差的等差數列,故,,,?,由(Ⅱ)知a=1時,,x>2,即,x>2.法一:令,得,即因為,所以,故.法二:?下面用數學歸納法證明.(1)當n=1時,令x=1代入,即得,不等式成立(1)假設n=k(k∈N*,k≥1)時,不等式成立,即,則n=k+1時,,令代入,得,即:,由(1)(1)可知不等式對任何n∈N*都成立.故.考點:1利用導數研究函數的單調性;1、利用導數研究函數的最值;3、數列的通項公式;4、數列的前項和;5、不等式的證明.21、(1);(2).【解析】

(1)求導得到有兩個不相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論