版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣西玉林市福綿區(qū)2025屆高二上數(shù)學(xué)期末達標檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點為雙曲線的左頂點,點和點在雙曲線的右分支上,是等邊三角形,則的面積是A. B.C. D.2.函數(shù)的部分圖像為()A. B.C. D.3.已知線段AB的端點B在直線l:y=-x+5上,端點A在圓C1:上運動,線段AB的中點M的軌跡為曲線C2,若曲線C2與圓C1有兩個公共點,則點B的橫坐標的取值范圍是()A.(-1,0) B.(1,4)C.(0,6) D.(-1,5)4.等比數(shù)列{}中,已知=8,+=4,則的值為()A.1 B.2C.3 D.55.如圖,平行六面體中,為的中點,,,,則()A. B.C. D.6.數(shù)列中,,,.當時,則n等于()A.2016 B.2017C.2018 D.20197.如圖,四棱錐中,底面是邊長為的正方形,平面,為底面內(nèi)的一動點,若,則動點的軌跡在()A.圓上 B.雙曲線上C.拋物線上 D.橢圓上8.已知直線與垂直,則為()A.2 B.C.-2 D.9.若直線的方向向量為,平面的法向量為,則()A. B.C. D.與相交但不垂直10.若圓上恰有2個點到直線的距離為1,則實數(shù)的取值范圍為()A B.C. D.11.已知F是雙曲線的右焦點,過F且垂直于x軸的直線交E于A,B兩點,若E的漸近線上恰好存在四個點,,,,使得,則E的離心率的取值范圍是()A. B.C. D.12.下列關(guān)于函數(shù)及其圖象的說法正確的是()A.B.最小正周期為C.函數(shù)圖象的對稱中心為點D.函數(shù)圖象的對稱軸方程為二、填空題:本題共4小題,每小題5分,共20分。13.若,則與向量同方向的單位向量的坐標為____________.14.函數(shù)的單調(diào)遞減區(qū)間是___________.15.已知的頂點A(1,5),邊AB上的中線CM所在的直線方程為,邊AC上的高BH所在直線方程為,求(1)頂點C的坐標;(2)直線BC的方程;16.圓錐的軸截面是邊長為2的等邊三角形,為底面中心,為的中點,動點在圓錐底面內(nèi)(包括圓周).若,則點形成的軌跡的長度為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知的內(nèi)角的對邊分別為a,,若向量,且(1)求角的值;(2)已知的外接圓半徑為,求周長的最大值.18.(12分)一個盒中裝有編號分別為、、、的四個形狀大小完全相同的小球.(1)從盒中任取兩球,列出所有的基本事件,并求取出的球的編號之和大于的概率;(2)從盒中任取一球,記下該球的編號,將球放回,再從盒中任取一球,記下該球的編號,列出所有的基本事件,并求的概率.19.(12分)已知數(shù)列是公差為2的等差數(shù)列,它的前n項和為,且,,成等比數(shù)列(1)求的通項公式(2)求數(shù)列的前n項和20.(12分)已知函數(shù),曲線在處的切線方程為.(Ⅰ)求實數(shù),的值;(Ⅱ)求在區(qū)間上的最值.21.(12分)已知拋物線E:y2=8x(1)求拋物線的焦點及準線方程;(2)過點P(-1,1)的直線l1與拋物線E只有一個公共點,求直線l1的方程;(3)過點M(2,3)的直線l2與拋物線E交于點A,B.若弦AB的中點為M,求直線l2的方程22.(10分)如圖,在四棱錐中,四邊形為正方形,已知平面,且,E為中點(1)證明:平面;(2)證明:平面平面
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè)點在軸上方,由是等邊三角形得直線斜率.又直線過點,故方程為.代入雙曲線方程,得點的坐標為.同理可得,點的坐標為.故的面積為,選C.2、D【解析】先判斷奇偶性排除C,再利用排除B,求導(dǎo)判斷單調(diào)性可排除A.【詳解】因為,所以為偶函數(shù),排除C;因為,排除B;當時,,,當時,,所以函數(shù)在區(qū)間上單調(diào)遞減,排除A.故選:D3、D【解析】設(shè),AB的中點,由中點坐標公式求得,代入圓C1:得點點M的軌跡方程,再根據(jù)兩圓的位置關(guān)系建立不等式,代入,求解即可得點B的橫坐標的取值范圍.【詳解】解:設(shè),AB的中點,則,所以,又因為端點A在圓C1:上運動,所以,即,因為曲線C2與圓C1有兩個公共點,所以,又因B在直線l:y=-x+5上,所以,所以,整理得,即,解得,所以點B的橫坐標的取值范圍是,故選:D.4、C【解析】由等比數(shù)列性質(zhì)求出公比,將原式化簡后計算【詳解】設(shè)等比數(shù)列{}的公比為,則=,=,所以==.又+=+=(+)=8×=2,+=+=(+)=8×=1,所以+++=2+1=3.故選:C5、B【解析】先用向量與表示,然后用向量表示向量與,即可得解【詳解】解:為的中點,故選:【點睛】本題考查了平面向量基本定理的應(yīng)用,解決本題的關(guān)鍵是熟練運用向量的加法、減法及實數(shù)與向量的積的運算,屬于基礎(chǔ)題6、B【解析】根據(jù)已知條件用逐差法求得的通項公式,再根據(jù)裂項求和法求得,代值計算即可.【詳解】因為,,則,即,則,故,又,即,解得.故選:B.7、A【解析】根據(jù)題意,得到兩兩垂直,以點為坐標原點,分別以為軸,建立空間直角坐標系,設(shè),由題意,得到,,再由得到,求出點的軌跡,即可得出結(jié)果.【詳解】由題意,兩兩垂直,以點為坐標原點,分別以為軸,建立如圖所示的空間直角坐標系,因為底面是邊長為的正方形,則,,因為為底面內(nèi)的一動點,所以可設(shè),因此,,因為平面,所以,因此,所以由得,即,整理得:,表示圓,因此,動點的軌跡在圓上.故選:A.【點睛】本題主要考查立體幾何中的軌跡問題,靈活運用空間向量的方法求解即可,屬于??碱}型.8、A【解析】利用一般式中直線垂直的系數(shù)關(guān)系列式求解.【詳解】因為直線與垂直,故選:A.9、B【解析】通過判斷直線的方向向量與平面的法向量的關(guān)系,可得結(jié)論【詳解】因為,,所以,所以∥,因為直線的方向向量為,平面的法向量為,所以,故選:B10、A【解析】求得圓心到直線的距離,根據(jù)題意列出的不等關(guān)系式,即可求得的范圍.【詳解】因為圓心到直線的距離,故要滿足題意,只需,解得.故選:A.11、D【解析】由題意以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點,則必有,又當圓M經(jīng)過原點時此時以AB為直徑的圓M上與雙曲線E的漸近線有三個不同的交點,不滿足,從而得出答案.【詳解】由題意,由得,雙曲線的漸近線方程為所以,由,可知,,,在以AB為直徑的圓M上,圓的半徑為即以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點當圓M與漸近線相切時,圓心到漸近線的距離,則必有,即,則雙曲線E的離心率,所以又當圓M經(jīng)過原點時,,解得E的離心率為,此時以AB為直徑圓M與雙曲線E的漸近線有三個不同的交點,不滿足條件.所以E的離心率的取值范圍是.故選:D12、D【解析】化簡,利用正弦型函數(shù)的性質(zhì),依次判斷,即可【詳解】∵∴,A選項錯誤;的最小正周期為,B選項錯誤;令,則,故函數(shù)圖象的對稱中心為點,C選項錯誤;令,則,所以函數(shù)圖象的對稱軸方程為,D選項正確故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由空間向量的模的計算求得向量的模,再由單位向量的定義求得答案.【詳解】解:因為,所以,所以與向量同方向的單位向量的坐標為,故答案為:.14、【解析】首先對求導(dǎo),可得,令,解可得答案【詳解】解:由得,故的單調(diào)遞減區(qū)間是故答案為:【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.15、(1);(2).【解析】(1)設(shè)出點C的坐標,進而根據(jù)點C在中線上及求得答案;(2)設(shè)出點B的坐標,進而求出點M的坐標,然后根據(jù)中線的方程及求出點B的坐標,進而求出直線BC的方程.【小問1詳解】設(shè)C點的坐標為,則由題知,即.【小問2詳解】設(shè)B點的坐標為,則中點M坐標代入中線CM方程則由題知,即,又,則,所以直線BC方程為.16、【解析】建立空間直角坐標系設(shè),,,,于是,,因為,所以,從而,,此為點形成的軌跡方程,其在底面圓盤內(nèi)的長度為三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)6【解析】(1)由可得,再利用正弦定理和三角函數(shù)恒等變換公可得,從而可求出角的值,(2)利用正弦定理求出,再利用余弦定理結(jié)合基本不等式可得的最大值為4,從而可求出三角形周長的最大值【小問1詳解】由,得
,由正弦定理,得,即.在中,由,得.又,所以.【小問2詳解】根據(jù)題意,得,由余弦定理,得,即,整理得,當且僅當時,取等號,所以的最大值為所以.所以的周長的最大值為
.18、(1)基本事件答案見解析,概率為;(2)基本事件答案見解析,概率為.【解析】(1)利用列舉法列舉出所有的基本事件,并確定事件“取出的球的編號之和大于”所包含的基本事件數(shù),利用古典概型的概率公式可求得結(jié)果;(2)利用列舉法列舉出所有的基本事件,并確定事件“”所包含的基本事件數(shù),利用古典概型的概率公式可求得結(jié)果.【詳解】(1)記“從盒中任取兩球,取出球的編號之和大于”為事件,樣本點表示“從盒中取出、號球”,且和表示相同的樣本點(以此類推),則樣本空間為,則,根據(jù)古典概型可知,從盒中任取兩球,取出球的編號之和大于的概率為;(2)記“”為事件,樣本點表示第一次取出號球,將球放回,從盒中取出號球(以此類推),則樣本空間,則,所以,故事件“”的概率為.19、(1);(2)【解析】(1)根據(jù)等差數(shù)列的通項公式,分別表示出與,由等比中項定義即可求得首項,進而求得的通項公式(2)根據(jù)等差數(shù)列的首項與公差,求出的前n項和,進而可知,再用裂項法可求得【詳解】(1)由題意,得,,所以由,得,解得,所以,即(2)由(1)知,則,,【點睛】本題考查了等差數(shù)列通項公式的應(yīng)用,等比中項的定義,裂項法求數(shù)列前n項和的簡單應(yīng)用,屬于基礎(chǔ)題20、(Ⅰ)最大值為,最小值為.(Ⅱ)最大值為,最小值為.【解析】(Ⅰ)切點在函數(shù)上,也在切線方程為上,得到一個式子,切線的斜率等于曲線在的導(dǎo)數(shù),得到另外一個式子,聯(lián)立可求實數(shù),的值;(Ⅱ)函數(shù)在閉區(qū)間的最值在極值點或者端點處取得,通過比較大小可得最大值和最小值.【詳解】解:(Ⅰ),∵曲線在處的切線方程為,∴解得,.(Ⅱ)由(Ⅰ)知,,則,令,解得,∴在上單調(diào)遞減,在上單調(diào)遞增,又,,,∴在區(qū)間上的最大值為,最小值為.【點睛】本題主要考查導(dǎo)函數(shù)與切線方程的關(guān)系以及利用導(dǎo)函數(shù)求最值的問題.21、(1)焦點為(2,0),準線方程為x=-2;(2)y=1或x-y+2=0或2x+y+1=0;(3)4x-3y+1=0.【解析】(1)根據(jù)拋物線的方程及其幾何性質(zhì),求焦點和準線;(2)分直線l1的斜率為0和不為0兩種情況,根據(jù)直線與拋物線只有一個公共點,由直線與x軸平行或Δ=0,得解;(3)利用點差法求出直線l2的斜率,即可得直線l2的方程【小問1詳解】由題意,p=4,則焦點為(2,0),準線方程為x=-2【小問2詳解】當直線l1的斜率為0時,y=1;當直線l1的斜率不為0時,設(shè)直線l1為x+1=m(y-1),聯(lián)立,得y2-8my+8m+8=0,因為直線l1與拋物線E只有一個公共點,所以Δ=64m2-4(8m+8)=0,解得m=1或,所以直線l1的方程為x-y+2=0或2x+y+1=0,綜上,直線l1為y=1或x-y+2=0或2x+y+1=0【小問3詳解】由題意,直線l2的斜率一定存在,設(shè)其斜率為k,A(x1,y1),B(x2,y2),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 聊城職業(yè)技術(shù)學(xué)院《機械制造概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 麗江文化旅游學(xué)院《防火防爆技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西衛(wèi)生職業(yè)學(xué)院《測量儀表與自動化》2023-2024學(xué)年第一學(xué)期期末試卷
- 江南大學(xué)《移動開發(fā)技術(shù)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 華北理工大學(xué)輕工學(xué)院《物流運作規(guī)劃》2023-2024學(xué)年第一學(xué)期期末試卷
- 自貢職業(yè)技術(shù)學(xué)院《藝術(shù)名著導(dǎo)讀》2023-2024學(xué)年第一學(xué)期期末試卷
- 周口文理職業(yè)學(xué)院《虛擬儀器技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶科技職業(yè)學(xué)院《信息技術(shù)與課件制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江水利水電學(xué)院《民用航空法》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州西亞斯學(xué)院《太極拳理論基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)三年級數(shù)學(xué)下冊計算題大全(每日一練共25份)
- Unit 3 同步練習(xí)人教版2024七年級英語上冊
- “十四五”期間推進智慧水利建設(shè)實施方案
- EPC項目機電安裝專業(yè)工程重難點分析及經(jīng)驗交流
- 大型活動聯(lián)合承辦協(xié)議
- 工程項目采購與供應(yīng)鏈管理研究
- 2024年吉林高考語文試題及答案 (2) - 副本
- 拆除電纜線施工方案
- 搭竹架合同范本
- Neo4j介紹及實現(xiàn)原理
- 焊接材料-DIN-8555-標準
評論
0/150
提交評論