版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆江蘇省徐州、連云港、宿遷三市新高三起點(diǎn)調(diào)研測(cè)試數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知正方體的棱長(zhǎng)為2,點(diǎn)在線(xiàn)段上,且,平面經(jīng)過(guò)點(diǎn),則正方體被平面截得的截面面積為()A. B. C. D.2.阿波羅尼斯(約公元前262~190年)證明過(guò)這樣的命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)的點(diǎn)的軌跡是圓.后人將這個(gè)圓稱(chēng)為阿氏圓.若平面內(nèi)兩定點(diǎn),間的距離為2,動(dòng)點(diǎn)與,的距離之比為,當(dāng),,不共線(xiàn)時(shí),的面積的最大值是()A. B. C. D.3.幻方最早起源于我國(guó),由正整數(shù)1,2,3,……,這個(gè)數(shù)填入方格中,使得每行、每列、每條對(duì)角線(xiàn)上的數(shù)的和相等,這個(gè)正方形數(shù)陣就叫階幻方.定義為階幻方對(duì)角線(xiàn)上所有數(shù)的和,如,則()A.55 B.500 C.505 D.50504.執(zhí)行如圖所示的程序框圖后,輸出的值為5,則的取值范圍是().A. B. C. D.5.射線(xiàn)測(cè)厚技術(shù)原理公式為,其中分別為射線(xiàn)穿過(guò)被測(cè)物前后的強(qiáng)度,是自然對(duì)數(shù)的底數(shù),為被測(cè)物厚度,為被測(cè)物的密度,是被測(cè)物對(duì)射線(xiàn)的吸收系數(shù).工業(yè)上通常用镅241()低能射線(xiàn)測(cè)量鋼板的厚度.若這種射線(xiàn)對(duì)鋼板的半價(jià)層厚度為0.8,鋼的密度為7.6,則這種射線(xiàn)的吸收系數(shù)為()(注:半價(jià)層厚度是指將已知射線(xiàn)強(qiáng)度減弱為一半的某種物質(zhì)厚度,,結(jié)果精確到0.001)A.0.110 B.0.112 C. D.6.波羅尼斯(古希臘數(shù)學(xué)家,的公元前262-190年)的著作《圓錐曲線(xiàn)論》是古代世界光輝的科學(xué)成果,它將圓錐曲線(xiàn)的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒(méi)有插足的余地.他證明過(guò)這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k(k>0,且k≠1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱(chēng)為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長(zhǎng)軸端點(diǎn),C,D為橢圓的短軸端點(diǎn),動(dòng)點(diǎn)M滿(mǎn)足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.7.已知為實(shí)數(shù)集,,,則()A. B. C. D.8.若的二項(xiàng)展開(kāi)式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.79.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國(guó)其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒(méi)有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶(hù)上門(mén)排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無(wú)法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類(lèi)”人員,強(qiáng)化網(wǎng)格化管理,不落一戶(hù)、不漏一人.在排查期間,一戶(hù)6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對(duì)其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測(cè),若出現(xiàn)陽(yáng)性,則該家庭為“感染高危戶(hù)”.設(shè)該家庭每個(gè)成員檢測(cè)呈陽(yáng)性的概率均為()且相互獨(dú)立,該家庭至少檢測(cè)了5個(gè)人才能確定為“感染高危戶(hù)”的概率為,當(dāng)時(shí),最大,則()A. B. C. D.10.點(diǎn)在曲線(xiàn)上,過(guò)作軸垂線(xiàn),設(shè)與曲線(xiàn)交于點(diǎn),,且點(diǎn)的縱坐標(biāo)始終為0,則稱(chēng)點(diǎn)為曲線(xiàn)上的“水平黃金點(diǎn)”,則曲線(xiàn)上的“水平黃金點(diǎn)”的個(gè)數(shù)為()A.0 B.1 C.2 D.311.執(zhí)行如圖的程序框圖,若輸出的結(jié)果,則輸入的值為()A. B.C.3或 D.或12.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知定義在的函數(shù)滿(mǎn)足,且當(dāng)時(shí),,則的解集為_(kāi)_________________.14.下圖是一個(gè)算法流程圖,則輸出的的值為_(kāi)_________.15.將2個(gè)相同的紅球和2個(gè)相同的黑球全部放入甲、乙、丙、丁四個(gè)盒子里,其中甲、乙盒子均最多可放入2個(gè)球,丙、丁盒子均最多可放入1個(gè)球,且不同顏色的球不能放入同一個(gè)盒子里,共有________種不同的放法.16.已知為雙曲線(xiàn)的左、右焦點(diǎn),過(guò)點(diǎn)作直線(xiàn)與圓相切于點(diǎn),且與雙曲線(xiàn)的右支相交于點(diǎn),若是上的一個(gè)靠近點(diǎn)的三等分點(diǎn),且,則四邊形的面積為_(kāi)______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,己知圓和雙曲線(xiàn),記與軸正半軸、軸負(fù)半軸的公共點(diǎn)分別為、,又記與在第一、第四象限的公共點(diǎn)分別為、.(1)若,且恰為的左焦點(diǎn),求的兩條漸近線(xiàn)的方程;(2)若,且,求實(shí)數(shù)的值;(3)若恰為的左焦點(diǎn),求證:在軸上不存在這樣的點(diǎn),使得.18.(12分)已知函數(shù)的最大值為,其中.(1)求實(shí)數(shù)的值;(2)若求證:.19.(12分)如圖,直三棱柱中,分別是的中點(diǎn),.(1)證明:平面;(2)求二面角的余弦值.20.(12分)已知,,設(shè)函數(shù),.(1)若,求不等式的解集;(2)若函數(shù)的最小值為1,證明:.21.(12分)已知數(shù)列的各項(xiàng)均為正數(shù),為其前n項(xiàng)和,對(duì)于任意的滿(mǎn)足關(guān)系式.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的通項(xiàng)公式是,前n項(xiàng)和為,求證:對(duì)于任意的正數(shù)n,總有.22.(10分)已知函數(shù).(1)求不等式的解集;(2)若正數(shù)、滿(mǎn)足,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
先根據(jù)平面的基本性質(zhì)確定平面,然后利用面面平行的性質(zhì)定理,得到截面的形狀再求解.【詳解】如圖所示:確定一個(gè)平面,因?yàn)槠矫嫫矫?,所以,同理,所以四邊形是平行四邊?即正方體被平面截的截面.因?yàn)?,所以,即所以由余弦定理得:所以所以四邊形故選:B【點(diǎn)睛】本題主要考查平面的基本性質(zhì),面面平行的性質(zhì)定理及截面面積的求法,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.2、A【解析】
根據(jù)平面內(nèi)兩定點(diǎn),間的距離為2,動(dòng)點(diǎn)與,的距離之比為,利用直接法求得軌跡,然后利用數(shù)形結(jié)合求解.【詳解】如圖所示:設(shè),,,則,化簡(jiǎn)得,當(dāng)點(diǎn)到(軸)距離最大時(shí),的面積最大,∴面積的最大值是.故選:A.【點(diǎn)睛】本題主要考查軌跡的求法和圓的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.3、C【解析】
因?yàn)榛梅降拿啃小⒚苛?、每條對(duì)角線(xiàn)上的數(shù)的和相等,可得,即得解.【詳解】因?yàn)榛梅降拿啃?、每列、每條對(duì)角線(xiàn)上的數(shù)的和相等,所以階幻方對(duì)角線(xiàn)上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,,于是.故選:C【點(diǎn)睛】本題考查了數(shù)陣問(wèn)題,考查了學(xué)生邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.4、C【解析】
框圖的功能是求等比數(shù)列的和,直到和不滿(mǎn)足給定的值時(shí),退出循環(huán),輸出n.【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;第四次循環(huán):;此時(shí)滿(mǎn)足輸出結(jié)果,故.故選:C.【點(diǎn)睛】本題考查程序框圖的應(yīng)用,建議數(shù)據(jù)比較小時(shí),可以一步一步的書(shū)寫(xiě),防止錯(cuò)誤,是一道容易題.5、C【解析】
根據(jù)題意知,,代入公式,求出即可.【詳解】由題意可得,因?yàn)?所以,即.所以這種射線(xiàn)的吸收系數(shù)為.故選:C【點(diǎn)睛】本題主要考查知識(shí)的遷移能力,把數(shù)學(xué)知識(shí)與物理知識(shí)相融合;重點(diǎn)考查指數(shù)型函數(shù),利用指數(shù)的相關(guān)性質(zhì)來(lái)研究指數(shù)型函數(shù)的性質(zhì),以及解指數(shù)型方程;屬于中檔題.6、D【解析】
求得定點(diǎn)M的軌跡方程可得,解得a,b即可.【詳解】設(shè)A(-a,0),B(a,0),M(x,y).∵動(dòng)點(diǎn)M滿(mǎn)足=2,則=2,化簡(jiǎn)得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點(diǎn)睛】本題考查了橢圓離心率,動(dòng)點(diǎn)軌跡,屬于中檔題.7、C【解析】
求出集合,,,由此能求出.【詳解】為實(shí)數(shù)集,,,或,.故選:.【點(diǎn)睛】本題考查交集、補(bǔ)集的求法,考查交集、補(bǔ)集的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.8、B【解析】
先化簡(jiǎn)的二項(xiàng)展開(kāi)式中第項(xiàng),然后直接求解即可【詳解】的二項(xiàng)展開(kāi)式中第項(xiàng).令,則,∴,∴(舍)或.【點(diǎn)睛】本題考查二項(xiàng)展開(kāi)式問(wèn)題,屬于基礎(chǔ)題9、A【解析】
根據(jù)題意分別求出事件A:檢測(cè)5個(gè)人確定為“感染高危戶(hù)”發(fā)生的概率和事件B:檢測(cè)6個(gè)人確定為“感染高危戶(hù)”發(fā)生的概率,即可得出的表達(dá)式,再根據(jù)基本不等式即可求出.【詳解】設(shè)事件A:檢測(cè)5個(gè)人確定為“感染高危戶(hù)”,事件B:檢測(cè)6個(gè)人確定為“感染高危戶(hù)”,∴,.即設(shè),則∴當(dāng)且僅當(dāng)即時(shí)取等號(hào),即.故選:A.【點(diǎn)睛】本題主要考查概率的計(jì)算,涉及相互獨(dú)立事件同時(shí)發(fā)生的概率公式的應(yīng)用,互斥事件概率加法公式的應(yīng)用,以及基本不等式的應(yīng)用,解題關(guān)鍵是對(duì)題意的理解和事件的分解,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力和數(shù)學(xué)建模能力,屬于較難題.10、C【解析】
設(shè),則,則,即可得,設(shè),利用導(dǎo)函數(shù)判斷的零點(diǎn)的個(gè)數(shù),即為所求.【詳解】設(shè),則,所以,依題意可得,設(shè),則,當(dāng)時(shí),,則單調(diào)遞減;當(dāng)時(shí),,則單調(diào)遞增,所以,且,有兩個(gè)不同的解,所以曲線(xiàn)上的“水平黃金點(diǎn)”的個(gè)數(shù)為2.故選:C【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)處理零點(diǎn)問(wèn)題,考查向量的坐標(biāo)運(yùn)算,考查零點(diǎn)存在性定理的應(yīng)用.11、D【解析】
根據(jù)逆運(yùn)算,倒推回求x的值,根據(jù)x的范圍取舍即可得選項(xiàng).【詳解】因?yàn)?所以當(dāng),解得
,所以3是輸入的x的值;當(dāng)時(shí),解得,所以是輸入的x的值,所以輸入的x的值為
或3,故選:D.【點(diǎn)睛】本題考查了程序框圖的簡(jiǎn)單應(yīng)用,通過(guò)結(jié)果反求輸入的值,屬于基礎(chǔ)題.12、B【解析】
奇函數(shù)滿(mǎn)足定義域關(guān)于原點(diǎn)對(duì)稱(chēng)且,在上即可.【詳解】A:因?yàn)槎x域?yàn)?,所以不可能時(shí)奇函數(shù),錯(cuò)誤;B:定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且滿(mǎn)足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且滿(mǎn)足奇函數(shù),,在上,因?yàn)?,所以在上不是增函?shù),錯(cuò)誤;D:定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且,滿(mǎn)足奇函數(shù),在上很明顯存在變號(hào)零點(diǎn),所以在上不是增函數(shù),錯(cuò)誤;故選:B【點(diǎn)睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點(diǎn)對(duì)稱(chēng),屬于簡(jiǎn)單題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由已知得出函數(shù)是偶函數(shù),再得出函數(shù)的單調(diào)性,得出所解不等式的等價(jià)的不等式,可得解集.【詳解】因?yàn)槎x在的函數(shù)滿(mǎn)足,所以函數(shù)是偶函數(shù),又當(dāng)時(shí),,得時(shí),,所以函數(shù)在上單調(diào)遞減,所以函數(shù)在上單調(diào)遞減,函數(shù)在上單調(diào)遞增,所以不等式等價(jià)于,即或,解得或,所以不等式的解集為:.故答案為:.【點(diǎn)睛】本題考查抽象函數(shù)的不等式的求解,關(guān)鍵得出函數(shù)的奇偶性,單調(diào)性,屬于中檔題.14、3【解析】
分析程序中各變量、各語(yǔ)句的作用,根據(jù)流程圖所示的順序,即可得出結(jié)論.【詳解】解:初始,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;經(jīng)判斷,此時(shí)跳出循環(huán),輸出.故答案為:【點(diǎn)睛】本題考查了程序框圖的應(yīng)用問(wèn)題,解題的關(guān)鍵是對(duì)算法語(yǔ)句的理解,屬基礎(chǔ)題.15、【解析】
討論裝球盒子的個(gè)數(shù),計(jì)算得到答案.【詳解】當(dāng)四個(gè)盒子有球時(shí):種;當(dāng)三個(gè)盒子有球時(shí):種;當(dāng)兩個(gè)盒子有球時(shí):種.故共有種,故答案為:.【點(diǎn)睛】本題考查了排列組合的綜合應(yīng)用,意在考查學(xué)生的理解能力和應(yīng)用能力.16、60【解析】
根據(jù)題中給的信息與雙曲線(xiàn)的定義可求得與,再在中,由余弦定理求解得,繼而得到各邊的長(zhǎng)度,再根據(jù)計(jì)算求解即可.【詳解】如圖所示:設(shè)雙曲線(xiàn)的半焦距為.因?yàn)?,,所以由勾股定理,得.所以.因?yàn)槭巧弦粋€(gè)靠近點(diǎn)的三等分點(diǎn),是的中點(diǎn),所以.由雙曲線(xiàn)的定義可知:,所以.在中,由余弦定理可得,所以,整理可得.所以,解得.所以.則.則,得.則的底邊上的高為.所以.故答案為:60【點(diǎn)睛】本題主要考查了雙曲線(xiàn)中利用定義與余弦定理求解線(xiàn)段長(zhǎng)度與面積的方法,需要根據(jù)雙曲線(xiàn)的定義表示各邊的長(zhǎng)度,再在合適的三角形里面利用余弦定理求得基本量的關(guān)系.屬于難題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2);(2)見(jiàn)解析.【解析】
(1)由圓的方程求出點(diǎn)坐標(biāo),得雙曲線(xiàn)的,再計(jì)算出后可得漸近線(xiàn)方程;(2)設(shè),由圓方程與雙曲線(xiàn)方程聯(lián)立,消去后整理,可得,,由先求出,回代后求得坐標(biāo),計(jì)算;(3)由已知得,設(shè),由圓方程與雙曲線(xiàn)方程聯(lián)立,消去后整理,可解得,,求出,從而可得,由,可知滿(mǎn)足要求的點(diǎn)不存在.【詳解】(1)由題意圓方程為,令得,∴,即,∴,,∴漸近線(xiàn)方程為.(2)由(1)圓方程為,,設(shè),由得,(*),,,,所以,即,解得,方程(*)為,即,,代入雙曲線(xiàn)方程得,∵在第一、四象限,∴,,∴.(3)由題意,,,,,設(shè)由得:,,由得,解得,,,所以,,,當(dāng)且僅當(dāng)三點(diǎn)共線(xiàn)時(shí),等號(hào)成立,∴軸上不存在點(diǎn),使得.【點(diǎn)睛】本題考查求漸近線(xiàn)方程,考查圓與雙曲線(xiàn)相交問(wèn)題.考查向量的加法運(yùn)算,本題對(duì)學(xué)生的運(yùn)算求解能力要求較高,解題時(shí)都是直接求出交點(diǎn)坐標(biāo).難度較大,屬于困難題.18、(1)1;(2)證明見(jiàn)解析.【解析】
(1)利用零點(diǎn)分段法將表示為分段函數(shù)的形式,由此求得的最大值,進(jìn)而求得的值.(2)利用(1)的結(jié)論,將轉(zhuǎn)化為,求得的取值范圍,利用換元法,結(jié)合函數(shù)的單調(diào)性,證得,由此證得不等式成立.【詳解】(1)當(dāng)時(shí),取得最大值.(2)證明:由(1)得,,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,令,則在上單調(diào)遞減當(dāng)時(shí),.【點(diǎn)睛】本小題主要考查含有絕對(duì)值的函數(shù)的最值的求法,考查利用基本不等式進(jìn)行證明,屬于中檔題.19、(1)證明見(jiàn)解析(2)【解析】
(1)連接交于點(diǎn),由三角形中位線(xiàn)定理得,由此能證明平面.(2)以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,的方向?yàn)檩S正方向,的方向?yàn)檩S正方向,建立空間直角坐標(biāo)系.分別求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值.【詳解】證明:證明:連接交于點(diǎn),則為的中點(diǎn).又是的中點(diǎn),連接,則.因?yàn)槠矫妫矫?,所以平面.?)由,可得:,即所以又因?yàn)橹崩庵?,所以以點(diǎn)為坐標(biāo)原點(diǎn),分別以直線(xiàn)為軸、軸、軸,建立空間直角坐
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《微波技術(shù)總結(jié)》課件
- 2022年浙江省嘉興市公開(kāi)招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2023年黑龍江省鶴崗市公開(kāi)招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2021年黑龍江省齊齊哈爾市公開(kāi)招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年內(nèi)蒙古自治區(qū)烏海市公開(kāi)招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 《夢(mèng)想學(xué)堂使用手冊(cè)》課件
- 經(jīng)典搞笑句子
- 英語(yǔ)請(qǐng)假條的格式
- 遼寧省本溪市(2024年-2025年小學(xué)六年級(jí)語(yǔ)文)統(tǒng)編版小升初模擬(上學(xué)期)試卷及答案
- 2025年電池化學(xué)品項(xiàng)目規(guī)劃申請(qǐng)報(bào)告模板
- 北京市東城區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末生物試題【含答案解析】
- 天皰瘡臨床分期與治療方案研究
- 開(kāi)放系統(tǒng)10861《理工英語(yǔ)(4)》期末機(jī)考真題及答案(第102套)
- 綜合技能訓(xùn)練實(shí)訓(xùn)報(bào)告學(xué)前教育
- 2024年國(guó)家能源集團(tuán)招聘筆試參考題庫(kù)含答案解析
- MOOC 管理學(xué)-鄭州輕工業(yè)大學(xué) 中國(guó)大學(xué)慕課答案
- 軍事理論智慧樹(shù)知到期末考試答案2024年
- 2024年貴州貴安發(fā)展集團(tuán)有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 《混凝土的檢測(cè)》課件
- 衛(wèi)生健康系統(tǒng)2024年安全生產(chǎn)和消防工作要點(diǎn)
- CNC數(shù)控編程述職報(bào)告
評(píng)論
0/150
提交評(píng)論