版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省鄒平縣達標名校2023-2024學年中考數(shù)學模擬精編試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.小張同學制作了四張材質(zhì)和外觀完全一樣的書簽,每個書簽上寫著一本書的名稱或一個作者姓名,分別是:《西游記》、施耐庵、《安徒生童話》、安徒生,從這四張書簽中隨機抽取兩張,則抽到的書簽正好是相對應(yīng)的書名和作者姓名的概率是()A. B. C. D.2.已知⊙O的半徑為5,若OP=6,則點P與⊙O的位置關(guān)系是()A.點P在⊙O內(nèi) B.點P在⊙O外 C.點P在⊙O上 D.無法判斷3.對于一組統(tǒng)計數(shù)據(jù):1,6,2,3,3,下列說法錯誤的是()A.平均數(shù)是3 B.中位數(shù)是3 C.眾數(shù)是3 D.方差是2.54.如圖1,在矩形ABCD中,動點E從A出發(fā),沿AB→BC方向運動,當點E到達點C時停止運動,過點E做FE⊥AE,交CD于F點,設(shè)點E運動路程為x,F(xiàn)C=y(tǒng),如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,當點E在BC上運動時,F(xiàn)C的最大長度是,則矩形ABCD的面積是()A. B.5 C.6 D.5.如果將直線l1:y=2x﹣2平移后得到直線l2:y=2x,那么下列平移過程正確的是()A.將l1向左平移2個單位 B.將l1向右平移2個單位C.將l1向上平移2個單位 D.將l1向下平移2個單位6.如圖,在平面直角坐標系中,正方形的頂點在軸上,且,,則正方形的面積是()A. B. C. D.7.下列說法不正確的是()A.選舉中,人們通常最關(guān)心的數(shù)據(jù)是眾數(shù)B.從1,2,3,4,5中隨機抽取一個數(shù),取得奇數(shù)的可能性比較大C.甲、乙兩人在相同條件下各射擊10次,他們的平均成績相同,方差分別為S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定D.數(shù)據(jù)3,5,4,1,﹣2的中位數(shù)是48.如圖直線y=mx與雙曲線y=交于點A、B,過A作AM⊥x軸于M點,連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.49.將分別標有“孔”“孟”“之”“鄉(xiāng)”漢字的四個小球裝在一個不透明的口袋中,這些球除漢字外無其他差別,每次摸球前先攪拌均勻.隨機摸出一球,不放回;再隨機摸出一球.兩次摸出的球上的漢字能組成“孔孟”的概率是()A. B. C. D.10.春季是傳染病多發(fā)的季節(jié),積極預防傳染病是學校高度重視的一項工作,為此,某校對學生宿舍采取噴灑藥物進行消毒.在對某宿舍進行消毒的過程中,先經(jīng)過的集中藥物噴灑,再封閉宿舍,然后打開門窗進行通風,室內(nèi)每立方米空氣中含藥量與藥物在空氣中的持續(xù)時間之間的函數(shù)關(guān)系,在打開門窗通風前分別滿足兩個一次函數(shù),在通風后又成反比例,如圖所示.下面四個選項中錯誤的是()A.經(jīng)過集中噴灑藥物,室內(nèi)空氣中的含藥量最高達到B.室內(nèi)空氣中的含藥量不低于的持續(xù)時間達到了C.當室內(nèi)空氣中的含藥量不低于且持續(xù)時間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效D.當室內(nèi)空氣中的含藥量低于時,對人體才是安全的,所以從室內(nèi)空氣中的含藥量達到開始,需經(jīng)過后,學生才能進入室內(nèi)11.如圖,在邊長為3的等邊三角形ABC中,過點C垂直于BC的直線交∠ABC的平分線于點P,則點P到邊AB所在直線的距離為()A.33 B.32 C.12.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0).下列結(jié)論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當x>﹣1時,y>0,其中正確結(jié)論的個數(shù)是A.5個 B.4個 C.3個 D.2個二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在一個不透明的布袋中裝有4個白球和n個黃球,它們除顏色不同外,其余均相同,若從中隨機摸出一個球,摸到白球的概率是,則n=_____.14.如圖,以點為圓心的兩個同心圓中,大圓的弦是小圓的切線,點是切點,則劣弧AB的長為.(結(jié)果保留)15.如圖,AB∥CD,∠1=62°,FG平分∠EFD,則∠2=.16.2的平方根是_________.17.如圖,四邊形ACDF是正方形,和都是直角,且點三點共線,,則陰影部分的面積是__________.18.已知△ABC∽△DEF,若△ABC與△DEF的相似比為,則△ABC與△DEF對應(yīng)中線的比為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于點F,交BC于點G,交AB的延長線于點E,且AE=AC.求證:BG=FG;若AD=DC=2,求AB的長.20.(6分)如圖,△ABC內(nèi)接于⊙O,∠B=600,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑.21.(6分)在平面直角坐標系xOy中,拋物線y=12x(1)求直線BC的解析式;(2)點D在拋物線上,且點D的橫坐標為1.將拋物線在點A,D之間的部分(包含點A,D)記為圖象G,若圖象G向下平移t(t>0)個單位后與直線BC只有一個公共點,求t的取值范圍.22.(8分)先化簡,再求值:,且x為滿足﹣3<x<2的整數(shù).23.(8分)如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點E,與過點C的⊙O的切線交于點D.若AC=4,BC=2,求OE的長.試判斷∠A與∠CDE的數(shù)量關(guān)系,并說明理由.24.(10分)某家電銷售商場電冰箱的銷售價為每臺1600元,空調(diào)的銷售價為每臺1400元,每臺電冰箱的進價比每臺空調(diào)的進價多300元,商場用9000元購進電冰箱的數(shù)量與用7200元購進空調(diào)數(shù)量相等.(1)求每臺電冰箱與空調(diào)的進價分別是多少?(2)現(xiàn)在商場準備一次購進這兩種家電共100臺,設(shè)購進電冰箱x臺,這100臺家電的銷售利潤為Y元,要求購進空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于16200元,請分析合理的方案共有多少種?(3)實際進貨時,廠家對電冰箱出廠價下調(diào)K(0<K<150)元,若商場保持這兩種家電的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計出使這100臺家電銷售總利潤最大的進貨方案.25.(10分)先化簡,再求值:x226.(12分)圖1所示的遮陽傘,傘柄垂直于水平地面,其示意圖如圖2、當傘收緊時,點P與點A重合;當傘慢慢撐開時,動點P由A向B移動;當點P到達點B時,傘張得最開、已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、設(shè)AP=x分米.(1)求x的取值范圍;(2)若∠CPN=60°,求x的值;(3)設(shè)陽光直射下,傘下的陰影(假定為圓面)面積為y,求y關(guān)于x的關(guān)系式(結(jié)果保留π).27.(12分)中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,B,C,D四個等級,并將結(jié)果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整.請你根據(jù)統(tǒng)計圖解答下列問題:參加比賽的學生共有____名;在扇形統(tǒng)計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據(jù)題意先畫出樹狀圖得出所有等情況數(shù)和到的書簽正好是相對應(yīng)的書名和作者姓名的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有12種等情況數(shù),抽到的書簽正好是相對應(yīng)的書名和作者姓名的有2種情況,則抽到的書簽正好是相對應(yīng)的書名和作者姓名的概率是=;故選D.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、B【解析】
比較OP與半徑的大小即可判斷.【詳解】,,,點P在外,故選B.【點睛】本題考查點與圓的位置關(guān)系,記?。狐c與圓的位置關(guān)系有3種設(shè)的半徑為r,點P到圓心的距離,則有:點P在圓外;點P在圓上;點P在圓內(nèi).3、D【解析】
根據(jù)平均數(shù)、中位數(shù)、眾數(shù)和方差的定義逐一求解可得.【詳解】解:A、平均數(shù)為1+6+2+3+35B、重新排列為1、2、3、3、6,則中位數(shù)為3,正確;C、眾數(shù)為3,正確;D、方差為15×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2故選:D.【點睛】本題考查了眾數(shù)、平均數(shù)、中位數(shù)、方差.平均數(shù)平均數(shù)表示一組數(shù)據(jù)的平均程度.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(或最中間兩個數(shù)的平均數(shù));方差是用來衡量一組數(shù)據(jù)波動大小的量.4、B【解析】
易證△CFE∽△BEA,可得,根據(jù)二次函數(shù)圖象對稱性可得E在BC中點時,CF有最大值,列出方程式即可解題.【詳解】若點E在BC上時,如圖∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,,∴△CFE∽△BEA,由二次函數(shù)圖象對稱性可得E在BC中點時,CF有最大值,此時,BE=CE=x﹣,即,∴,當y=時,代入方程式解得:x1=(舍去),x2=,∴BE=CE=1,∴BC=2,AB=,∴矩形ABCD的面積為2×=5;故選B.【點睛】本題考查了二次函數(shù)頂點問題,考查了相似三角形的判定和性質(zhì),考查了矩形面積的計算,本題中由圖象得出E為BC中點是解題的關(guān)鍵.5、C【解析】
根據(jù)“上加下減”的原則求解即可.【詳解】將函數(shù)y=2x﹣2的圖象向上平移2個單位長度,所得圖象對應(yīng)的函數(shù)解析式是y=2x.故選:C.【點睛】本題考查的是一次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象變換的法則是解答此題的關(guān)鍵.6、D【解析】作BE⊥OA于點E.則AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,,∴正方形的面積是:,故選D.7、D【解析】試題分析:A、選舉中,人們通常最關(guān)心的數(shù)據(jù)為出現(xiàn)次數(shù)最多的數(shù),所以A選項的說法正確;B、從1,2,3,4,5中隨機抽取一個數(shù),由于奇數(shù)由3個,而偶數(shù)有2個,則取得奇數(shù)的可能性比較大,所以B選項的說法正確;C、甲、乙兩人在相同條件下各射擊10次,他們的平均成績相同,方差分別為S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定,所以C選項的說法正確;D、數(shù)據(jù)3,5,4,1,﹣2由小到大排列為﹣2,1,3,4,5,所以中位數(shù)是3,所以D選項的說法錯誤.故選D.考點:隨機事件發(fā)生的可能性(概率)的計算方法8、B【解析】
此題可根據(jù)反比例函數(shù)圖象的對稱性得到A、B兩點關(guān)于原點對稱,再由S△ABM=1S△AOM并結(jié)合反比例函數(shù)系數(shù)k的幾何意義得到k的值.【詳解】根據(jù)雙曲線的對稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數(shù)圖象位于一三象限,k>0,所以k=1.故選B.【點睛】本題主要考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點.9、B【解析】
根據(jù)簡單概率的計算公式即可得解.【詳解】一共四個小球,隨機摸出一球,不放回;再隨機摸出一球一共有12中可能,其中能組成孔孟的有2種,所以兩次摸出的球上的漢字能組成“孔孟”的概率是.故選B.考點:簡單概率計算.10、C【解析】
利用圖中信息一一判斷即可.【詳解】解:A、正確.不符合題意.B、由題意x=4時,y=8,∴室內(nèi)空氣中的含藥量不低于8mg/m3的持續(xù)時間達到了11min,正確,不符合題意;C、y=5時,x=2.5或24,24-2.5=21.5<35,故本選項錯誤,符合題意;D、正確.不符合題意,故選C.【點睛】本題考查反比例函數(shù)的應(yīng)用、一次函數(shù)的應(yīng)用等知識,解題的關(guān)鍵是讀懂圖象信息,屬于中考??碱}型.11、D【解析】試題分析:∵△ABC為等邊三角形,BP平分∠ABC,∴∠PBC=12∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC?tan∠PBC=3考點:1.角平分線的性質(zhì);2.等邊三角形的性質(zhì);3.含30度角的直角三角形;4.勾股定理.12、B【解析】
解:∵二次函數(shù)y=ax3+bx+c(a≠3)過點(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵拋物線的對稱軸在y軸右側(cè),∴,x>3.∴a與b異號.∴ab<3,正確.②∵拋物線與x軸有兩個不同的交點,∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正確.④∵拋物線開口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正確.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正確.⑤拋物線y=ax3+bx+c與x軸的一個交點為(﹣3,3),設(shè)另一個交點為(x3,3),則x3>3,由圖可知,當﹣3<x<x3時,y>3;當x>x3時,y<3.∴當x>﹣3時,y>3的結(jié)論錯誤.綜上所述,正確的結(jié)論有①②③④.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
根據(jù)白球的概率公式=列出方程求解即可.【詳解】不透明的布袋中的球除顏色不同外,其余均相同,共有n+4個球,其中白球4個,根據(jù)古典型概率公式知:P(白球)==.解得:n=1,故答案為1.【點睛】此題主要考查了概率公式的應(yīng)用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.14、8π.【解析】試題分析:因為AB為切線,P為切點,劣弧AB所對圓心角考點:勾股定理;垂徑定理;弧長公式.15、31°.【解析】試題分析:由AB∥CD,根據(jù)平行線的性質(zhì)得∠1=∠EFD=62°,然后根據(jù)角平分線的定義即可得到∠2的度數(shù).∵AB∥CD,∴∠1=∠EFD=62°,∵FG平分∠EFD,∴∠2=12∠EFD=1故答案是31°.考點:平行線的性質(zhì).16、【解析】
直接根據(jù)平方根的定義求解即可(需注意一個正數(shù)有兩個平方根).【詳解】解:2的平方根是故答案為.【點睛】本題考查了平方根的定義.注意一個正數(shù)有兩個平方根,它們互為相反數(shù);0的平方根是0;負數(shù)沒有平方根.17、8【解析】【分析】證明△AEC≌△FBA,根據(jù)全等三角形對應(yīng)邊相等可得EC=AB=4,然后再利用三角形面積公式進行求解即可.【詳解】∵四邊形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S陰影==8,故答案為8.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì),三角形面積等,求出CE=AB是解題的關(guān)鍵.18、3:4【解析】由于相似三角形的相似比等于對應(yīng)中線的比,∴△ABC與△DEF對應(yīng)中線的比為3:4故答案為3:4.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)AB=【解析】
(1)證明:∵,DE⊥AC于點F,∴∠ABC=∠AFE.∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE∴AB=AF.連接AG,∵AG=AG,AB=AF∴Rt△ABG≌Rt△AFG∴BG=FG(2)解:∵AD=DC,DF⊥AC∴∴∠E=30°∴∠FAD=∠E=30°∴AB=AF=20、(1)見解析(2)2【解析】解:(1)證明:連接OA,∵∠B=600,∴∠AOC=2∠B=1.∵OA=OC,∴∠OAC=∠OCA=2.又∵AP=AC,∴∠P=∠ACP=2.∴∠OAP=∠AOC﹣∠P=3.∴OA⊥PA.∵OA是⊙O的半徑,∴PA是⊙O的切線.(2)在Rt△OAP中,∵∠P=2,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OA.∵PD=,∴2OA=2PD=2.∴⊙O的直徑為2..(1)連接OA,根據(jù)圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=2,再由AP=AC得出∠P=2,繼而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,從而得出結(jié)論.(2)利用含2的直角三角形的性質(zhì)求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直徑.21、(1)y=12x+1【解析】試題分析:(1)首先根據(jù)拋物線y=12x2-x+2求出與y軸交于點A,頂點為點B的坐標,然后求出點A關(guān)于拋物線的對稱軸對稱點C的坐標,設(shè)設(shè)直線BC的解析式為y=kx+b.代入點B,點C的坐標,然后解方程組即可;(2)求出點D、E、F的坐標,設(shè)點A平移后的對應(yīng)點為點A',點D平移后的對應(yīng)點為點D'.當圖象G向下平移至點A'與點E重合時,點D'在直線BC上方,此時t=1;當圖象G向下平移至點D'試題解析:解:(1)∵拋物線y=12x∴點A的坐標為(0,2).1分∵y=1∴拋物線的對稱軸為直線x=1,頂點B的坐標為(1,32又∵點C與點A關(guān)于拋物線的對稱軸對稱,∴點C的坐標為(2,2),且點C在拋物線上.設(shè)直線BC的解析式為y=kx+b.∵直線BC經(jīng)過點B(1,32∴k+b=32∴直線BC的解析式為y=1(2)∵拋物線y=1當x=4時,y=6,∴點D的坐標為(1,6).1分∵直線y=1當x=0時,y=1,當x=4時,y=3,∴如圖,點E的坐標為(0,1),點F的坐標為(1,2).設(shè)點A平移后的對應(yīng)點為點A',點D平移后的對應(yīng)點為點D'.當圖象G向下平移至點A'與點E重合時,點D'在直線BC上方,此時t=1;5分當圖象G向下平移至點D'與點F重合時,點A'在直線BC下方,此時t=2.6分結(jié)合圖象可知,符合題意的t的取值范圍是1<t≤考點:1.二次函數(shù)的性質(zhì);2.待定系數(shù)法求解析式;2.平移.22、-5【解析】
根據(jù)分式的運算法則即可求出答案.【詳解】原式=[+]÷=(+)?x=x﹣1+x﹣2=2x﹣3由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5【點睛】本題考查分式的運算法則,解題的關(guān)鍵是熟練運用分式的運算法則,本題屬于基礎(chǔ)題型.23、(1);(2)∠CDE=2∠A.【解析】
(1)在Rt△ABC中,由勾股定理得到AB的長,從而得到半徑AO.再由△AOE∽△ACB,得到OE的長;(2)連結(jié)OC,得到∠1=∠A,再證∠3=∠CDE,從而得到結(jié)論.【詳解】(1)∵AB是⊙O的直徑,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB==,∴AO=AB=.∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴OE==.(2)∠CDE=2∠A.理由如下:連結(jié)OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考點:切線的性質(zhì);探究型;和差倍分.24、(1)每臺空調(diào)的進價為1200元,每臺電冰箱的進價為1500元;(2)共有5種方案;(3)當100<k<150時,購進電冰箱38臺,空調(diào)62臺,總利潤最大;當0<k<100時,購進電冰箱34臺,空調(diào)66臺,總利潤最大,當k=100時,無論采取哪種方案,y1恒為20000元.【解析】
(1)用“用9000元購進電冰箱的數(shù)量與用7200元購進空調(diào)數(shù)量相等”建立方程即可;(2)建立不等式組求出x的范圍,代入即可得出結(jié)論;(3)建立y1=(k﹣100)x+20000,分三種情況討論即可.【詳解】(1)設(shè)每臺空調(diào)的進價為m元,則每臺電冰箱的進價(m+300)元,由題意得,,∴m=1200,經(jīng)檢驗,m=1200是原分式方程的解,也符合題意,∴m+300=1500元,答:每臺空調(diào)的進價為1200元,每臺電冰箱的進價為1500元;(2)由題意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,∵,∴33≤x≤38,∵x為正整數(shù),∴x=34,35,36,37,38,即:共有5種方案;(3)設(shè)廠家對電冰箱出廠價下調(diào)k(0<k<150)元后,這100臺家電的銷售總利潤為y1元,∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,當100<k<150時,y1隨x的最大而增大,∴x=38時,y1取得最大值,即:購進電冰箱38臺,空調(diào)62臺,總利潤最大,當0<k<100時,y1隨x的最大而減小,∴x=34時,y1取得最大值,即:購進電冰箱34臺,空調(diào)66臺,總利潤最大,當k=100時,無論采取哪種方案,y1恒為20000元.【點睛】本題考查了一次函數(shù)的應(yīng)用,分式方程的應(yīng)用,不等式組的應(yīng)用,根據(jù)題意
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年認繳股權(quán)轉(zhuǎn)讓協(xié)議范本版B版
- 2025年度環(huán)保技術(shù)研發(fā)與推廣服務(wù)合同范本
- 2024年股份回購協(xié)議樣式版
- 2024年裝修施工合同協(xié)議書3篇
- 2024年藥品生產(chǎn)質(zhì)量管理協(xié)議3篇
- 2024年美陳布置執(zhí)行合同
- 2024年環(huán)保分包工程協(xié)調(diào)管理合同
- 2024年風機及附屬設(shè)施購銷合同
- 鐵路車站消防泵房安裝協(xié)議
- 圖書館隔墻改造協(xié)議
- (新版)工業(yè)機器人系統(tǒng)操作員(三級)職業(yè)鑒定理論考試題庫(含答案)
- 食材配送服務(wù)方案(技術(shù)方案)
- 課件:《中華民族共同體概論》第一講 中華民族共同體基礎(chǔ)理論
- 2024-2025學年安徽省合肥市蜀山區(qū)數(shù)學四年級第一學期期末質(zhì)量檢測試題含解析
- 離婚協(xié)議書模板可打印(2024版)
- 2024國家開放大學電大??啤东F醫(yī)基礎(chǔ)》期末試題及答案試卷號2776
- 廠區(qū)保潔服務(wù)投標方案【2024版】技術(shù)方案
- 養(yǎng)老機構(gòu)績效考核及獎勵制度
- 龍巖市2022-2023學年七年級上學期期末生物試題【帶答案】
- DB32-T 4750-2024 模塊化裝配式污水處理池技術(shù)要求
- 企業(yè)員工績效管理與員工工作動機的激發(fā)
評論
0/150
提交評論