江西省九江市重點中學2025屆高二上數(shù)學期末達標檢測模擬試題含解析2_第1頁
江西省九江市重點中學2025屆高二上數(shù)學期末達標檢測模擬試題含解析2_第2頁
江西省九江市重點中學2025屆高二上數(shù)學期末達標檢測模擬試題含解析2_第3頁
江西省九江市重點中學2025屆高二上數(shù)學期末達標檢測模擬試題含解析2_第4頁
江西省九江市重點中學2025屆高二上數(shù)學期末達標檢測模擬試題含解析2_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江西省九江市重點中學2025屆高二上數(shù)學期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在二面角的棱上有兩個點、,線段、分別在這個二面角的兩個面內(nèi),并且都垂直于棱,若,,,,則這個二面角的大小為()A. B.C. D.2.下面三種說法中,正確說法的個數(shù)為()①如果兩個平面有三個公共點,那么這兩個平面重合;②兩條直線可以確定一個平面;③若,,,則A.1 B.2C.3 D.03.中秋節(jié)吃月餅是我國的傳統(tǒng)習俗,若一盤中共有兩種月餅,其中5塊五仁月餅、6塊棗泥月餅,現(xiàn)從盤中任取3塊,在取到的都是同種月餅的條件下,都是五仁月餅的概率是()A B.C. D.4.過拋物線C:y2=4x的焦點F分別作斜率為k1、k2的直線l1、l2,直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,若|k1·k2|=2,則|AB|+|DE|的最小值為()A.10 B.12C.14 D.165.若圓與圓外切,則()A. B.C. D.6.不等式解集為()A. B.C. D.7.在四棱錐中,底面是正方形,為的中點,若,則()A B.C. D.8.已知,則()A. B.1C. D.9.用反證法證明“若a,b∈R,,則a,b不全為0”時,假設正確的是()A.a,b中只有一個為0 B.a,b至少一個不為0C.a,b至少有一個為0 D.a,b全為010.若方程表示雙曲線,則的取值范圍是()A.或 B.C.或 D.11.如圖,在長方體中,,,則直線和夾角的余弦值為()A. B.C. D.12.已知f(x)是定義在R上的函數(shù),且f(2)=2,,則f(x)>x的解集是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的右頂點為A,右焦點為F,過點F平行于雙曲線的一條漸近線的直線與雙曲線交于點B,則的面積為__________14.在數(shù)列中,,,記是數(shù)列的前項和,則=___.15.已知拋物線的焦點為F,O為坐標原點,M的準線為l且與x軸相交于點B,A為M上的一點,直線AO與直線l相交于C點,若,,則M的標準方程為______________.16.已知P,A,B,C四點共面,對空間任意一點O,若,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,以橢圓兩個焦點與短軸的一個端點為頂點構成的三角形的面積為(1)求橢圓C的標準方程;(2)過點作直線l與橢圓C相切于點Q,且直線l斜率大于0,過線段PQ的中點R作直線交橢圓于A,B兩點(點A,B不在y軸上),連結PA,PB,分別與橢圓交于點M,N,試判斷直線MN的斜率是否為定值;若是,請求出該定值18.(12分)已知橢圓經(jīng)過點,橢圓E的一個焦點為.(1)求橢圓E的方程;(2)若直線l過點且與橢圓E交于兩點.求的最大值.19.(12分)已知橢圓的離心率為,右焦點F到上頂點的距離為.(1)求橢圓的方程;(2)是否存在過點F且與x軸不垂直的直線與橢圓交于A、B兩點,使得點C()在線段AB的中垂線上?若存在,求出直線l:若不存在,說明理曲.20.(12分)如圖,已知多面體,,,均垂直于平面,,,,(1)證明:平面;(2)求直線平面所成的角的正弦值21.(12分)某品牌餐飲公司準備在10個規(guī)模相當?shù)牡貐^(qū)開設加盟店,為合理安排各地區(qū)加盟店的個數(shù),先在其中5個地區(qū)試點,得到試點地區(qū)加盟店個數(shù)分別為1,2,3,4,5時,單店日平均營業(yè)額(萬元)的數(shù)據(jù)如下:加盟店個數(shù)(個)12345單店日平均營業(yè)額(萬元)10.910.297.871(參考數(shù)據(jù)及公式:,,線性回歸方程,其中,.)(1)求單店日平均營業(yè)額(萬元)與所在地區(qū)加盟店個數(shù)(個)的線性回歸方程;(2)根據(jù)試點調(diào)研結果,為保證規(guī)模和效益,在其他5個地區(qū),該公司要求同一地區(qū)所有加盟店的日平均營業(yè)額預計值總和不低于35萬元,求一個地區(qū)開設加盟店個數(shù)的所有可能取值;(3)小趙與小王都準備加入該公司的加盟店,根據(jù)公司規(guī)定,他們只能分別從其他五個地區(qū)(加盟店都不少于2個)中隨機選一個地區(qū)加入,求他們選取的地區(qū)相同的概率.22.(10分)已知點是圓上任意一點,是圓內(nèi)一點,線段的垂直平分線與半徑相交于點(1)當點在圓上運動時,求點的軌跡的方程;(2)設不經(jīng)過坐標原點,且斜率為的直線與曲線相交于、兩點,記、的斜率分別是、,以、為直徑的圓的面積分別為、當、都存在且不為時,試探究是否為定值?若是,求出此定值;若不是,請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設這個二面角的度數(shù)為,由題意得,從而得到,由此能求出結果.【詳解】設這個二面角的度數(shù)為,由題意得,,,解得,∴,∴這個二面角的度數(shù)為,故選:C.【點睛】本題考查利用向量的幾何運算以及數(shù)量積研究面面角.2、A【解析】對于①,有兩種情況,對于②考慮異面直線,對于③根據(jù)線面公理可判斷.【詳解】如果兩個平面有三個公共點,那么這兩個平面重合或者是相交,故①不正確;兩條異面直線不能確定一個平面,故②不正確;若,,,可知必在交線上,則,故③正確;綜上所述只有一個說法是正確的.故選:A3、C【解析】分別求出取到3塊月餅都是同種月餅和取到3塊月餅都是五仁月餅的種數(shù),再根據(jù)概率公式即可得解.【詳解】解:由題意可得,取到3塊月餅都是同種月餅有種情況,取到3塊月餅都是五仁月餅有種情況,所以在取到的都是同種月餅的條件下,都是五仁月餅的概率是.故選:C.4、B【解析】設出l1的方程為,與拋物線聯(lián)立后得到兩根之和,兩根之積,用弦長公式表達出,同理表達出,利用基本不等式求出的最小值.【詳解】拋物線C:y2=4x的焦點F為,直線l1的方程為,則聯(lián)立后得到,設,,,則,同理設可得:,因為|k1·k2|=2,所以,當且僅當,即或時,等號成立,故選:B5、C【解析】求得兩圓的圓心坐標和半徑,結合兩圓相外切,列出方程,即可求解.【詳解】由題意,圓與圓可得,,因為兩圓相外切,可得,解得故選:C.6、C【解析】化簡一元二次不等式的標準形式并求出解集即可.【詳解】不等式整理得,解得或,則不等式解集為.故選:.7、C【解析】由為的中點,根據(jù)向量的運算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點,且,根據(jù)向量的運算法則,可得.故選:C.8、B【解析】先根據(jù)共軛復數(shù)的定義可得,再根據(jù)復數(shù)的運算法則即可求出【詳解】因為,所以故選:B9、D【解析】把要證的結論否定之后,即得所求的反設【詳解】由于“a,b不全為0”的否定為:“a,b全為0”,所以假設正確的是a,b全為0.故選:D10、A【解析】由和的分母異號可得【詳解】由題意,解得或故選:A11、D【解析】如圖建立空間直角坐標系,分別求出的坐標,由空間向量夾角公式即可求解.【詳解】如圖:以為原點,分別以,,所在的直線為,,軸建立空間直角坐標系,則,,,,所以,,所以,所以直線和夾角的余弦值為,故選:D.12、D【解析】構造,結合已知有在R上遞增且,原不等式等價于,利用單調(diào)性求解集.【詳解】令,由題設知:,即在R上遞增,又,所以f(x)>x等價于,即.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由平行線的性質(zhì)求出斜率,由點斜式求出直線方程,然后求出交點坐標,由三角形面積公式可得結果.【詳解】雙曲線的右頂點,右焦點,,所以漸近線方程為,不妨設直線FB的方程為,將代入雙曲線方程整理,得,解得,,所以,所以故答案為:.14、930【解析】當為偶數(shù)時,,所以數(shù)列前60項中偶數(shù)項的和,當為奇數(shù)時,,因此數(shù)列是以1為首項,公差為2等差數(shù)列,前60項中奇數(shù)項的和為,所以.考點:遞推數(shù)列、等差數(shù)列.15、【解析】先利用相似關系計算,求得直線OA的方程,再聯(lián)立方程求得,利用拋物線定義根據(jù)即得p值,即得結果.【詳解】因為,,所以,則,如圖,,故,解得,所以,直線OA的斜率為,OA的方程,聯(lián)立直線OA與拋物線方程,解得,所以,故,則拋物線標準方程為.故答案為:.16、【解析】由條件可得存在實數(shù),使得,再用向量表示出向量,即可得出答案.詳解】P,A,B,C四點共面,則存在實數(shù),使得所以即所以,解得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)是,【解析】(1)根據(jù)離心率以及橢圓兩個焦點與短軸的一個端點為頂點構成的三角形的面積列出等式即可求解;(2)設出相關直線與相關點的坐標,直線與橢圓聯(lián)立,點的坐標配合斜率公式化簡,再運用韋達理化簡可證明.【小問1詳解】由題意得,解得,則橢圓C的標準方程為【小問2詳解】設切線PQ的方程為,,,,,由,消去y得①,則,解得或(舍去),將代入①得,,解得,則,所以,又R為PQ中點,則,因為PA,PB斜率都存在,不妨設,,由①可得,所以,,同理,,則,又R,A,B三點共線,則,化簡得,所以.18、(1)(2)【解析】(1)設橢圓的左,右焦點分別為,.利用橢圓的定義求出,然后求解,得到橢圓方程;(2)當直線的斜率存在時,設,,,,,聯(lián)立直線與橢圓方程,利用韋達定理以及弦長公式得到弦長的表達式,再通過換元利用二次函數(shù)的性質(zhì)求解最值即可【小問1詳解】依題意,設橢圓的左,右焦點分別為,則,,,,橢圓的方程為【小問2詳解】當直線的斜率存在時,設,,,,由得由得由,得設,則,當直線的斜率不存在時,,的最大值為19、(1)(2)存在,【解析】(1)由題意可得,,求得的值即可求解;(2)由(1)得,假設存在滿足條件的直線:,代入橢圓方程消去可得、,由中點坐標公式可得中點的坐標,由求得的值即可求解.小問1詳解】由題意可得,,,解得,,所以橢圓的方程為【小問2詳解】由(1)得,假設存在滿足條件的直線:,代入橢圓方程整理可得,設,,則,,可得,則線段的中點坐標為,所以,則,解得:,所以存在直線,且直線的方程為20、(1)證明見解析;(2)【解析】(1)由已知條件可得,,則,,再利用線面垂直的判定定理可證得結論;(2)如圖,過點作,交直線于點,連接,可證得平面,從而是與平面所成的角,然后在求解即可【詳解】(1)證明:由,,,,得,所以,由由,,,,得,由,得,由,得,所以,故,又,因此平面(2)解如圖,過點作,交直線于點,連接由平面,平面,得平面平面,由,得平面,所以是與平面所成的角由,,得,,所以,故因此,直線與平面所成的角的正弦值是【點睛】關鍵點點睛:此題考查線面垂直的判定和線面角的求法,解題的關鍵是通過過點作,交直線于點,連接,然后結合條件可證得是與平面所成的角,從而在三角形中求解即可,考查推理能力和計算能力,屬于中檔題21、(1);(2)5,6,7;(3).【解析】(1)先求得,,進而得到b,a求解;(2)根據(jù)題意,由求解;(3)利用古典概型的概率求解.【詳解】(1)由題可得,,,設所求線性回歸方程為,則,將,代入,得,故所求線性回歸方程為.(2)根據(jù)題意,,解得:,又,所以的所有可能取值為5,6,7.(3)設其他5個地區(qū)分別為,他們選擇結果共有25種,具體如下:,,,,,,,,,,,,,,,,,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論