版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
安徽省黃山市徽州區(qū)第一中學2025屆高二上數(shù)學期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,且,則的值為()A.4 B.2C.3 D.12.如圖,奧運五環(huán)由5個奧林匹克環(huán)套接組成,環(huán)從左到右互相套接,上面是藍、黑、紅環(huán),下面是黃,綠環(huán),整個造形為一個底部小的規(guī)則梯形.為迎接北京冬奧會召開,某機構(gòu)定制一批奧運五環(huán)旗,已知該五環(huán)旗的5個奧林匹克環(huán)的內(nèi)圈半徑為1,外圈半徑為1.2,相鄰圓環(huán)圓心水平距離為2.6,兩排圓環(huán)圓心垂直距離為1.1,則相鄰兩個相交的圓的圓心之間的距離為()A. B.2.8C. D.2.93.已知橢圓的兩個焦點分別為,且平行于軸的直線與橢圓交于兩點,那么的值為()A. B.C. D.4.直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.不確定5.已知兩條直線:,:,且,則的值為()A.-2 B.1C.-2或1 D.2或-16.函數(shù)y=x3+x2-x+1在區(qū)間[-2,1]上的最小值為()A. B.2C.-1 D.-47.已知雙曲線的離心率為,左焦點為F,實軸右端點為A,虛軸上端點為B,則為()A.直角三角形 B.鈍角三角形C.等腰三角形 D.銳角三角形8.已知在四棱錐中,平面,底面是邊長為4的正方形,,E為棱的中點,則直線與平面所成角的正弦值為()A. B.C. D.9.在等差數(shù)列中,,,則公差A.1 B.2C.3 D.410.若關(guān)于一元二次不等式的解集為,則實數(shù)的取值范圍是()A. B.C. D.11.已知雙曲線,則“”是“雙曲線的焦距大于4”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.過圓外一點引圓的兩條切線,則經(jīng)過兩切點的直線方程是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中所有項的系數(shù)和為_________14.拋物線C:的焦點F,其準線過(-3,3),過焦點F傾斜角為的直線交拋物線于A,B兩點,則p=___________;弦AB的長為___________.15.某人有樓房一棟,室內(nèi)面積共計,擬分割成兩類房間作為旅游客房,大房間每間面積為,可住游客4名,每名游客每天的住宿費100元;小房間每間面積為,可住游客2名,每名游客每天的住宿費150元;裝修大房間每間需要3萬元,裝修小房間每間需要2萬元.如果他只能籌款25萬元用于裝修,且假定游客能住滿客房,則該人一天能獲得的住宿費的最大值為___________元.16.命題“x≥1,x2-2x+4≥0”的否定為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的首項,前n項和為,且滿足.(1)求證:數(shù)列是等比數(shù)列;(2)設,求數(shù)列的前n項和.18.(12分)某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為(1)求頻率分布直方圖中的值;(2)估計該企業(yè)的職工對該部門評分不低于80的概率;(3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.19.(12分)如圖所示,是棱長為的正方體,是棱的中點,是棱的中點(1)求直線與平面所成角的正弦值;(2)求到平面的距離20.(12分)已知等差數(shù)列滿足,(1)求數(shù)列的通項公式及前10項和;(2)等比數(shù)列滿足,,求和:21.(12分)已知等差數(shù)列{an}的前n項和為Sn,數(shù)列{bn}滿足:點(n,bn)在曲線y=上,a1=b4,___,數(shù)列{}的前n項和為Tn從①S4=20,②S3=2a3,③3a3﹣a5=b2這三個條件中任選一個,補充到上面問題的橫線上并作答(1)求數(shù)列{an},{bn}的通項公式;(2)是否存在正整數(shù)k,使得Tk>,且bk>?若存在,求出滿足題意的k值;若不存在,請說明理由22.(10分)如圖,四棱錐中,底面是邊長為2的正方形,,,且,為的中點(1)求平面與平面夾角的余弦值;(2)在線段上是否存在點,使得點到平面的距離為?若存在,確定點的位置;若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意可得,利用空間向量數(shù)量積的坐標表示列方程,解方程即可求解.【詳解】因為,所以,因為向量,,所以,解得,所以的值為,故選:A.2、C【解析】根據(jù)題意作出輔助線直接求解即可.【詳解】如圖所示,由題意可知,在中,取的中點,連接,所以,,又因為,所以,所以即相鄰兩個相交的圓的圓心之間的距離為.故選:C3、A【解析】根據(jù)橢圓的方程求出,再由橢圓的對稱性及定義求解即可.【詳解】由橢圓的對稱性可知,,所以,又橢圓方程為,所以,解得,所以,故選:A4、A【解析】首先求出直線過定點,再判斷點在圓內(nèi),即可判斷;【詳解】解:直線恒過定點,又,即點在圓內(nèi)部,所以直線與圓相交;故選:A5、B【解析】兩直線平行,傾斜角相等,斜率均不存在或斜率存在且相等,據(jù)此即可求解.【詳解】:,:斜率不可能同時不存在,∴和斜率相等,則或,∵m=-2時,和重合,故m=1.另解:,故m=1.故選:B.6、C【解析】詳解】,令,解得或;令,解得函數(shù)在上遞增,在遞減,在遞增,時,取極大值,極大值是時,函數(shù)取極小值,極小值是,而時,時,,故函數(shù)的最小值為,故選C.7、A【解析】根據(jù)三邊的關(guān)系即可求出【詳解】因,所以,而,,,所以,即,所以為直角三角形故選:A8、B【解析】建立空間直角坐標系,以向量法去求直線與平面所成角的正弦值即可.【詳解】平面,底面是邊長為4的正方形,則有,而,故平面,以A為原點,分別以AB、AD、AP所在直線為x軸、y軸、z軸建立空間直角坐標系如圖:則,,,設直線與平面所成角為,又由題可知為平面的一個法向量,則故選:B9、B【解析】由,將轉(zhuǎn)化為表示,結(jié)合,即可求解.【詳解】,.故選:B.【點睛】本題考查等差數(shù)列基本量的計算,屬于基礎題.10、B【解析】結(jié)合判別式求得的取值范圍.【詳解】由于關(guān)于的一元二次不等式的解集為,所以,解得,所以實數(shù)的取值范圍是.故選:B11、A【解析】先找出“雙曲線的焦距大于4”的充要條件,再進行判斷即可【詳解】若的焦距,則;若,則故選:A12、A【解析】過圓外一點,引圓的兩條切線,則經(jīng)過兩切點的直線方程為,故選二、填空題:本題共4小題,每小題5分,共20分。13、##0.015625【解析】賦值法求解二項式展開式中所有項的系數(shù)和.【詳解】令得:,即為展開式中所有項的系數(shù)和.故答案為:14、①.6;②.48.【解析】先通過準線求出p,寫出拋物線方程和直線方程,聯(lián)立得出,進而求出弦AB的長.【詳解】由知準線方程為,又準線過(-3,3),可得,;焦點坐標為,故直線方程為,和拋物線方程聯(lián)立,,得,故,又.故答案為:6;48.15、3600【解析】先設分割大房間為間,小房間為間,收益為元,列出約束條件,再根據(jù)約束條件畫出可行域,設,再利用的幾何意義求最值,只需求出直線過可行域內(nèi)的整數(shù)點時,從而得到值即可【詳解】解:設裝修大房間間,小房間間,收益為萬元,則,目標函數(shù),由,解得畫出可行域,得到目標函數(shù)過點時,有最大值,故應隔出大房間3間和小房間8間,每天能獲得最大的房租收益最大,且為3600元故答案為:360016、【解析】根據(jù)還有一個量詞的命題的否定的方法解答即可.【詳解】命題“x≥1,x2-2x+4≥0”的否定為“”.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)當時,由,得,兩式相減化簡可得,再對等式兩邊同時減去1,化簡可證得結(jié)論,(2)由(1)得,然后利用分組求和可求出【小問1詳解】由已知得,.當時,.兩式相減得,.于是,即,又,,,所以滿足上式,所以對都成立,故數(shù)列是等比數(shù)列.【小問2詳解】由(1)得,,.18、(1)0.006;(2);(3).【解析】(1)在頻率分布直方圖中,由頻率總和即所有矩形面積之和為,可求;(2)在頻率分布直方圖中先求出50名受訪職工評分不低于80的頻率為,由頻率與概率關(guān)系可得該部門評分不低于80的概率的估計值為;(3)受訪職工評分在[50,60)的有3人,記為,受訪職工評分在[40,50)的有2人,記為,列出從這5人中選出兩人所有基本事件,即可求相應的概率.【詳解】(1)因為,所以(2)由所給頻率分布直方圖知,50名受訪職工評分不低于80的頻率為,所以該企業(yè)職工對該部門評分不低于80的概率的估計值為(3)受訪職工評分在[50,60)的有:50×0.006×10=3(人),即為;受訪職工評分在[40,50)的有:50×0.004×10=2(人),即為.從這5名受訪職工中隨機抽取2人,所有可能的結(jié)果共有10種,它們是又因為所抽取2人的評分都在[40,50)的結(jié)果有1種,即,故所求的概率為【點睛】本題考查頻率分布直方圖、概率與頻率關(guān)系、古典概型,屬中檔題;利用頻率分布直方圖解題的時,注意其表達的意義,同時要理解頻率是概率的估計值這一基礎知識;在利用古典概型解題時,要注意列出所有的基本事件,千萬不可出現(xiàn)重、漏的情況.19、(1)(2)【解析】(1)以為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得直線與平面所成角的正弦值;(2)求出平面的法向量,利用空間向量法可求得到平面的距離.【小問1詳解】解:以為坐標原點,、、所在直線分別為、、軸建立如下圖所示的坐標系則、、、、、、,所以,,設平面的一個法向量為,,,由,取,可得,所以,,直線與平面所成角的正弦為小問2詳解】解:設平面的一個法向量,,,由,即,令,得,,所以點到平面的距離為即到平面的距離為20、(1),175(2)【解析】(1)由已知結(jié)合等差數(shù)列的通項公式先求出公差,然后結(jié)合通項公式及求和公式即可求解;(2)結(jié)合等比數(shù)列的性質(zhì)先求出,然后結(jié)合等比數(shù)列性質(zhì)及求和公式可求【小問1詳解】解:等差數(shù)列滿足,,所以,,;【小問2詳解】解:因為等比數(shù)列滿足,,所以或(舍去),由等比數(shù)列的性質(zhì)可知,是以1為首項,4為公比的等比數(shù)列,所以,所以21、(1)條件選擇見解析;an=2n,bn=25﹣n.(2)不存在,理由見解析.【解析】(1)把點(n,bn)代入曲線y=可得到bn=25﹣n,進而求出a1,設等差數(shù)列{an}的公差為d,選①S4=20,利用等差數(shù)列的前n項和公式可求出d,從而得到an;若選②S3=2a3,利用等差數(shù)列的前n項和公式可求出d,從而得到an;若選③3a3﹣a5=b2,利用等差數(shù)列的通項公式公式可求出d,從而得到an;(2)由(1)可知Sn==n(1+n),=,再利用裂項相消法求出Tn=1﹣,不等式無解,即不存在正整數(shù)k,使得Tk>,且bk>【小問1詳解】解:∵點(n,bn)在曲線y=上,∴=25﹣n,∴a1=b4=25﹣4=2,設等差數(shù)列{an}的公差為d,若選①S4=20,則S4==20,解得d=2,∴an=2+2(n﹣1)=2n;若選②S3=2a3,則S3=a1+a2+a3=2a3,∴a1+a2=a3,∴2+2+d=2+2d,解得d=2,∴an=2+2(n﹣1)=2n;若選③3a3﹣a5=b2,則3(a1+2d)﹣(a1+4d)=25﹣2=8,∴2a1+2d=8,即2×2+2d=8,∴d=2,∴an=2+2(n﹣1)=2n;【小問2詳解】解:由(1)可知Sn===n(1+n),∴==,∴Tn=(1﹣)+()+……+()=1﹣,假設存在正整數(shù)k,使得Tk>,且bk>,∴,即,此不等式無解,∴不存在正整數(shù)k,使得Tk>,且bk>22、(1)(2)存在,點為線段的靠近點的三等分點【解析】(1)根據(jù)題意證得平面,進而證得平面,得到平面,以點為坐標原點,,,所在直線分別為軸、軸和軸建立空間直角坐標系,求得平面和平面的法向量,結(jié)合向量的夾角公式,即可求解;(2)設點,求得平面的法向量為,結(jié)合向量的距離公式列出方程,求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB45T-木材加工企業(yè)安全規(guī)范編制說明
- 學前教育管理學 課件
- 單位管理制度展示匯編人員管理
- 半導體行業(yè)分析:AI需求推動運力持續(xù)增長互聯(lián)方案重要性顯著提升
- 2022年河北省張家口市第二十中學中考模擬英語試題(原卷版)
- 《本胃癌腹腔鏡》課件
- 2025年中國糖果市場深度評估及投資方向研究報告
- 電影投資行業(yè)競爭格局及投資價值分析報告
- 《茶葉營銷策劃》課件
- 2025投資公司融資合同
- 中小學心理健康教育課程設計與實踐智慧樹知到答案2024年浙江師范大學
- 30萬噸合成氨50萬噸尿素裝置拆除項目施工組織設計
- 動物遺傳學智慧樹知到期末考試答案章節(jié)答案2024年西南大學
- 2024年7月國家開放大學??啤缎姓M織學》期末紙質(zhì)考試試題及答案
- 城市生命線安全…監(jiān)測預警指揮平臺建設方案
- 六年級數(shù)學《圓柱的體積》教案(一等獎)
- 呼吸科醫(yī)院感染危險因素評估
- 2024CSCO惡性腫瘤患者營養(yǎng)治療指南解讀
- 常見化學專業(yè)詞匯英文翻譯
- 內(nèi)科護理學智慧樹知到期末考試答案章節(jié)答案2024年荊門職業(yè)學院
- 趣味可拓學智慧樹知到期末考試答案章節(jié)答案2024年廣東工業(yè)大學
評論
0/150
提交評論