版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆重慶外國語學(xué)校高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在四棱錐中,四邊形為菱形,平面,是中點,下列敘述正確的是()A.平面 B.平面C.平面平面 D.平面平面2.焦點在軸的正半軸上,且焦點到準(zhǔn)線的距離為的拋物線的標(biāo)準(zhǔn)方程是()A. B.C. D.3.若關(guān)于x的方程有解,則實數(shù)a的取值范圍為()A. B.C. D.4.已知x是上的一個隨機的實數(shù),則使x滿足的概率為()A. B.C. D.5.在中,,,且BC邊上的高為,則滿足條件的的個數(shù)為()A.3 B.2C.1 D.06.動點到兩定點,的距離和是,則動點的軌跡為()A.橢圓 B.雙曲線C.線段 D.不能確定7.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,第九章“勾股”,講述了“勾股定理”及一些應(yīng)用,直角三角形的兩直角邊與斜邊的長分別稱“勾”“股”“弦”,且“”.設(shè)分別是雙曲線的左、右焦點,直線交雙曲線左、右兩支于兩點,若恰好是的“勾”“股”,則此雙曲線的離心率為()A. B.C.2 D.8.已知圓與直線至少有一個公共點,則的取值范圍為()A. B.C. D.9.已知直線與直線垂直,則()A. B.C. D.10.曲線在處的切線的傾斜角是()A. B.C. D.11.已知直線與圓相離,則以,,為邊長的三角形為()A.鈍角三角形 B.直角三角形C.銳角三角形 D.不存在12.在下列四條拋物線中,焦點到準(zhǔn)線的距離為1的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)解析式,則使得成立的的取值范圍是___________.14.已知數(shù)列的前4項依次為,,,,則的一個通項公式為________15.已知F1,F(xiàn)2是雙曲線C:﹣y2=1(a>0)的左、右焦點,點P是雙曲線C上的任意一點(不是頂點),過F1作∠F1PF2的角平分線的垂線,垂足為H,O是坐標(biāo)原點.若|F1F2|=6|OH|,則雙曲線C的方程為____16.已知函數(shù),則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)平面直角坐標(biāo)系中,曲線與坐標(biāo)軸交點都在圓上.(1)求圓的方程;(2)圓與直線交于,兩點,在圓上是否存在一點,使得四邊形為菱形?若存在,求出此時直線的方程;若不存在,說明理由.18.(12分)已知三點共線,其中是數(shù)列中的第n項.(1)求數(shù)列的通項;(2)設(shè),求數(shù)列的前n項和.19.(12分)已知圓的圓心在直線上,且圓與軸相切于點(1)求圓的標(biāo)準(zhǔn)方程;(2)若直線與圓相交于,兩點,求的面積20.(12分)已知橢圓的離心率為,右焦點為,斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為.(1)求橢圓的方程;(2)求的面積.21.(12分)已知橢圓的右焦點為F(,0),且點M(-,)在橢圓上.(1)求橢圓的方程;(2)直線l過點F,且與橢圓交于A,B兩點,過原點O作l的垂線,垂足為P,若,求λ的值.22.(10分)已知命題p:直線與雙曲線的右支有兩個不同的交點,命題q:直線與直線平行.(1)若,判斷命題“”的真假;(2)若命題“”為真命題,求實數(shù)k的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用反證法可判斷A選項;利用面面垂直的性質(zhì)可判斷BC選項;利用面面垂直的判定可判斷D選項.【詳解】對于A選項,因為四邊形為菱形,則,平面,平面,平面,若平面,因為,則平面平面,事實上,平面與平面相交,假設(shè)不成立,A錯;對于B選項,過點在平面內(nèi)作,垂足為點,平面,平面,則,,,平面,而過作平面的垂線,有且只有一條,故與平面不垂直,B錯;對于C選項,過點在平面內(nèi)作,垂足為點,因為平面,平面,則,,,則平面,若平面平面,過點在平面內(nèi)作,垂足為點,因為平面平面,平面平面,平面,平面,而過點作平面的垂線,有且只有一條,即、重合,所以,平面平面,所以,,但四邊形為菱形,、不一定垂直,C錯;對于D選項,因為四邊形為菱形,則,平面,平面,,,平面,因為平面,因此,平面平面平面,D對.故選:D.2、A【解析】直接由焦點位置及焦點到準(zhǔn)線的距離寫出標(biāo)準(zhǔn)方程即可.【詳解】由焦點在軸的正半軸上知拋物線開口向上,又焦點到準(zhǔn)線的距離為,故拋物線的標(biāo)準(zhǔn)方程是.故選:A.3、C【解析】將方程有解,轉(zhuǎn)化為方程有解求解.【詳解】解:因為方程有解,所以方程有解,因為,當(dāng)且僅當(dāng),即時,等號成立,所以實數(shù)a的取值范圍為,故選:C4、B【解析】先解不等式得到的范圍,再利用幾何概型的概率公式進行求解.【詳解】由得,即,所以使x滿足的概率為故選:B.5、B【解析】利用等面積法求得,再利用正弦定理求得,利用內(nèi)角和的關(guān)系及兩角和差化積公式,二倍角公式轉(zhuǎn)化為,再利用正弦函數(shù)的性質(zhì)求滿足條的的個數(shù),即可求解.【詳解】由三角形的面積公式知,即由正弦定理知所以,即,即,即利用兩角和的正弦公式結(jié)合二倍角公式化簡得又,則,,且由正弦函數(shù)的性質(zhì)可知,滿足的有2個,即滿足條件的的個數(shù)為2.故選:B6、A【解析】根據(jù)橢圓的定義,即可得答案.【詳解】由題意可得,根據(jù)橢圓定義可得,P點的軌跡為橢圓,故選:A7、A【解析】根據(jù)雙曲線的定義及直角三角形斜邊的中線定理,再結(jié)合雙曲線的離心率公式即可求解.【詳解】如圖所示由題意可知,根據(jù)雙曲線的定義知,是的中點且.在中,是的中點,所以,因為直線的斜率為,所以,所以.所以是等邊三角形,.在中,.由雙曲線的定義,得,所以雙曲線的離心率為.故選:A.8、C【解析】利用點到直線距離公式求出圓心到直線的距離范圍,從而求出的取值范圍.【詳解】圓心到直線的距離,當(dāng)且僅當(dāng)時等號成立,故只需即可.故選:C9、D【解析】根據(jù)互相垂直兩直線的斜率關(guān)系進行求解即可.【詳解】由,所以直線的斜率為,由,所以直線的斜率為,因為直線與直線垂直,所以,故選:D10、D【解析】求出函數(shù)的導(dǎo)數(shù),再求出并借助導(dǎo)數(shù)的幾何意義求解作答.【詳解】由求導(dǎo)得:,則有,因此,曲線在處的切線的斜率為,所以曲線在處切線的傾斜角是.故選:D11、A【解析】應(yīng)用直線與圓的相離關(guān)系可得,再由余弦定理及三角形內(nèi)角的性質(zhì)即可判斷三角形的形狀.【詳解】由題設(shè),,即,又,所以,且,故以,,為邊長的三角形為鈍角三角形.故選:A.12、D【解析】由題意可知,然后分析判斷即可【詳解】由題意知,即可滿足題意,故A,B,C錯誤,D正確.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意先判斷函數(shù)為偶函數(shù),再利用的導(dǎo)函數(shù)判斷在上單調(diào)遞增,根據(jù)偶函數(shù)的對稱性得上單調(diào)遞減.要使成立,即,解不等式即可得到答案.【詳解】,,為偶函數(shù),當(dāng)時,,故函數(shù)在上單調(diào)遞增.為偶函數(shù),在上單調(diào)遞減.要使成立,即.故答案為:.14、(答案不唯一)【解析】觀察數(shù)列前幾項,找出規(guī)律即可寫出通項公式.【詳解】根據(jù)數(shù)列前幾項,先不考慮正負(fù),可知,再由奇數(shù)項為負(fù),偶數(shù)項為正,可得到一個通項公式,故答案為:(不唯一)15、8x2﹣y2=1【解析】延長F1H與PF2,交于K,連接OH,由三角形的中位線定理和雙曲線的定義、垂直平分線的性質(zhì),結(jié)合雙曲線的a,b,c的關(guān)系,可得雙曲線方程【詳解】解:延長F1H與PF2,交于K,連接OH,由題意可得PH為邊KF1的垂直平分線,則|PF1|=|PK|,且H為KF1的中點,|OH|=|KF2|,由雙曲線的定義可得|PF1|﹣|PF2|=|PK|﹣|PF2|=|F2K|=2a,則|OH|=a,又|F1F2|=6|OH|,所以2c=6a,即c=3a,b==2a,又雙曲線C:﹣y2=1,知b=1,所以a=,所以雙曲線的方程為8x2﹣y2=1故答案為:8x2﹣y2=116、【解析】根據(jù)導(dǎo)數(shù)的定義求解即可【詳解】由,得,所以,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,直線方程為或.【解析】(1)利用待定系數(shù)法即求;(2)利用直線與圓的位置關(guān)系可得,然后利用菱形的性質(zhì)可得圓心到直線的距離,即得.【小問1詳解】曲線與軸的交點為,與軸的交點為,,設(shè)圓的方程為,則,解得.∴圓的方程為;【小問2詳解】∵圓與直線交于,兩點,圓化為,圓心坐標(biāo)為,半徑為.∴圓心到直線的距離,解得.假設(shè)存在點,使得四邊形為菱形,則與互相平分,∴圓心到直線的距離,即,解得,經(jīng)驗證滿足條件.∴存在點,使得四邊形為菱形,此時的直線方程為或.18、(1)(2)【解析】(1)由三點共線可知斜率相等,即可得出答案;(2)由題可得,利用錯位相減法即可求出答案.【小問1詳解】三點共線,【小問2詳解】①②①—②得19、(1)(2)4【解析】(1)由已知設(shè)圓心,再由相切求圓半徑從而得解.(2)求弦長,再求點到直線的距離,進而可得解.【小問1詳解】因為圓心在直線上,所以設(shè)圓心,又圓與軸相切于點,所以,即圓與軸相切,則圓的半徑,于是圓的方程為【小問2詳解】圓心到直線的距離,則,又到直線的距離為,所以.20、(1)(2)【解析】(1)根據(jù)橢圓的簡單幾何性質(zhì)知,又,寫出橢圓的方程;(2)先斜截式設(shè)出直線,聯(lián)立方程組,根據(jù)直線與圓錐曲線的位置關(guān)系,可得出中點為的坐標(biāo),再根據(jù)△為等腰三角形知,從而得的斜率為,求出,寫出:,并計算,再根據(jù)點到直線距離公式求高,即可計算出面積【詳解】(1)由已知得,,解得,又,所以橢圓的方程為(2)設(shè)直線的方程為,由得,①設(shè)、的坐標(biāo)分別為,(),中點為,則,,因為是等腰△的底邊,所以所以的斜率為,解得,此時方程①為解得,,所以,,所以,此時,點到直線:距離,所以△的面積考點:1、橢圓的簡單幾何性質(zhì);2、直線和橢圓的位置關(guān)系;3、橢圓的標(biāo)準(zhǔn)方程;4、點到直線的距離.【思路點晴】本題主要考查的是橢圓的方程,橢圓的簡單幾何性質(zhì),直線與橢圓的位置關(guān)系,點到直線的距離,屬于難題.解決本類問題時,注意使用橢圓的幾何性質(zhì),求得橢圓的標(biāo)準(zhǔn)方程;求三角形的面積需要求出底和高,在求解過程中要充分利用三角形是等腰三角形,進而知道定點與弦中點的連線垂直,這是解決問題的關(guān)鍵21、(1)(2)【解析】(1)求得,的值即可確定橢圓方程;(2)分類討論直線的斜率存在和斜率不存在兩種情況即可確定為定值【小問1詳解】由題意知:根據(jù)橢圓的定義得:,即,所以橢圓的標(biāo)準(zhǔn)方程為【小問2詳解】當(dāng)直線的斜率不存在時,的方程是此時,所以當(dāng)直線的斜率存在時,設(shè)直線的方程為,,,,由可得顯然△,則,因為,所以所以,此時綜上所述,為定值22、(1)命題“”為真命題(2)【解析】(1)先判斷命題p,命題q
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大學(xué)大學(xué)應(yīng)用概率與統(tǒng)計課件
- 機械制圖模擬題+答案
- 介紹河南的英文課件演講
- 養(yǎng)老院老人生活照顧標(biāo)準(zhǔn)制度
- 養(yǎng)老院老人健康監(jiān)測人員福利待遇制度
- 托管中心個體工商戶勞務(wù)合同范本(2篇)
- 拆除施工承包協(xié)議書(2篇)
- 《藥膳常用的中藥》課件
- 對數(shù)的運算性質(zhì)及其應(yīng)用課件
- 2024年會議室場地出租協(xié)議3篇
- 教育信息化2.0時代教師新技能進階智慧樹知到期末考試答案章節(jié)答案2024年重慶對外經(jīng)貿(mào)學(xué)院
- 江蘇開放大學(xué)本科財務(wù)管理專業(yè)060111馬克思主義基本原理期末試卷
- 2024年4月自考00155中級財務(wù)會計試題及答案
- 商務(wù)英語寫作1(山東聯(lián)盟)智慧樹知到期末考試答案章節(jié)答案2024年山東管理學(xué)院
- 2024年遼寧農(nóng)業(yè)職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫審定版
- 遇見朗讀者智慧樹知到期末考試答案章節(jié)答案2024年哈爾濱師范大學(xué)
- 中班音樂《小看戲》課件
- 電大財務(wù)大數(shù)據(jù)分析編程作業(yè)2
- 葡萄糖醛酸在藥物開發(fā)中的應(yīng)用
- 體溫表水銀泄露的應(yīng)急預(yù)案
- 導(dǎo)尿管相關(guān)尿路感染預(yù)防與控制技術(shù)指南(試行)-解讀
評論
0/150
提交評論