遼寧省盤錦市遼河油田一中2025屆高二數(shù)學第一學期期末檢測試題含解析_第1頁
遼寧省盤錦市遼河油田一中2025屆高二數(shù)學第一學期期末檢測試題含解析_第2頁
遼寧省盤錦市遼河油田一中2025屆高二數(shù)學第一學期期末檢測試題含解析_第3頁
遼寧省盤錦市遼河油田一中2025屆高二數(shù)學第一學期期末檢測試題含解析_第4頁
遼寧省盤錦市遼河油田一中2025屆高二數(shù)學第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省盤錦市遼河油田一中2025屆高二數(shù)學第一學期期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點在拋物線:上,點為拋物線的焦點,,點P到y(tǒng)軸的距離為4,則拋物線C的方程為()A. B.C. D.2.直線的傾斜角為()A.60° B.30°C.120° D.150°3.執(zhí)行如圖所示的程序框圖,如果輸入,那么輸出的a值為()A.3 B.27C.-9 D.94.設為直線上任意一點,過總能作圓的切線,則的最大值為()A. B.1C. D.5.函數(shù)的圖象大致為()A B.C D.6.已知定義域為R的函數(shù)f(x)不是偶函數(shù),則下列命題一定為真命題的是()A.?x∈R,f(-x)≠f(x)B.?x∈R,f(-x)≠-f(x)C?x0∈R,f(-x0)≠f(x0)D.?x0∈R,f(-x0)≠-f(x0)7.已知直線和互相平行,則實數(shù)的取值為()A或3 B.C. D.1或8.圓()上點到直線的最小距離為1,則A.4 B.3C.2 D.19.2020年北京時間11月24日我國嫦娥五號探月飛行器成功發(fā)射.嫦娥五號是我國探月工程“繞、落、回”三步走的收官之戰(zhàn),經(jīng)歷發(fā)射入軌、地月轉移、近月制動、環(huán)月飛行、著陸下降、月面工作、月面上升、交會對接與樣品轉移、環(huán)月等待、月地轉移、再入回收等11個關鍵階段.在經(jīng)過交會對接與樣品轉移階段后,若嫦娥五號返回器在近月點(離月面最近的點)約為200公里,遠月點(離月面最遠的點)約為8600公里,以月球中心為一個焦點的橢圓形軌道上等待時間窗口和指令進行下一步動作,月球半徑約為1740公里,則此橢圓軌道的離心率約為()A.0.32 B.0.48C.0.68 D.0.8210.已知直線與直線,若,則()A.6 B.C.2 D.11.若復數(shù)滿足,則復數(shù)對應的點的軌跡圍成圖形的面積等于()A. B.C. D.12.過橢圓右焦點作x軸的垂線,并交C于A,B兩點,直線l過C的左焦點和上頂點.若以線段AB為直徑的圓與有2個公共點,則C的離心率e的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若“”是真命題,則實數(shù)的最小值為_____________.14.直線的傾斜角的取值范圍是______.15.已知A(1,3),B(5,-2),點P在x軸上,則使|AP|-|BP|取最大值的點P的坐標是________16.已知直線過拋物線的焦點,且與的對稱軸垂直,與交于,兩點,,為的準線上一點,則的面積為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是等差數(shù)列,(1)求的通項公式;(2)求的最大項18.(12分)從①;②;③這三個條件中任選一個,補充在下面問題中,并作答設等差數(shù)列的前n項和為,,______;設數(shù)列的前n項和為,(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和注:作答前請先指明所選條件,如果選擇多個條件分別解答,按第一個解答計分19.(12分)已知數(shù)列中,.(1)證明是等比數(shù)列,并求通項公式;(2)設,記數(shù)列的前n項和為,求使恒成立的最小的整數(shù)k.20.(12分)如圖,已知正四棱錐中,O為底面對角線的交點.(1)求證:平面;(2)求證:平面.21.(12分)已知函數(shù),(1)求的單調區(qū)間;(2)當時,求證:在上恒成立22.(10分)已知圓:和圓外一點,過點作圓的切線,切線長為.(1)求圓的標準方程;(2)若圓:,求證:圓和圓相交,并求出兩圓的公共弦長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由拋物線定義可得,注意開口方向.詳解】設∵點P到y(tǒng)軸的距離是4∴∵,∴.得:.故選:D.2、C【解析】求出斜率,根據(jù)斜率與傾斜角的關系,即可求解.【詳解】解:,即,直線的斜率為,即直線的傾斜角為120°.故選:C.3、B【解析】分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)累乘值,并判斷滿足時輸出的值【詳解】解:模擬執(zhí)行程序框圖,可得,時,不滿足條件,;不滿足條件,;不滿足條件,;滿足條件,退出循環(huán),輸出的值為27故選:4、D【解析】根據(jù)題意,判斷點與圓的位置關系以及直線與圓的位置關系,根據(jù)直線與圓的位置關系,即可求得的最大值.【詳解】因為過過總能作圓的切線,故點在圓外或圓上,也即直線與圓相離或相切,則,即,解得,故的最大值為.故選:D.5、A【解析】利用導數(shù)求得的單調區(qū)間,結合函數(shù)值確定正確選項.【詳解】由,可得函數(shù)的減區(qū)間為,增區(qū)間為,當時,,可得選項為A故選:A6、C【解析】利用偶函數(shù)的定義和全稱命題的否定分析判斷解答.【詳解】∵定義域為R的函數(shù)f(x)不是偶函數(shù),∴?x∈R,f(-x)=f(x)為假命題,∴?x0∈R,f(-x0)≠f(x0)為真命題.故選C【點睛】本題主要考查偶函數(shù)的定義和全稱命題的否定,意在考查學生對該知識的理解掌握水平,屬于基礎題.7、B【解析】利用兩直線平行的等價條件求得實數(shù)m的值.【詳解】∵兩條直線x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故選B【點睛】已知兩直線的一般方程判定兩直線平行或垂直時,記住以下結論,可避免討論:已知,,則,8、A【解析】根據(jù)題意可得,圓心到直線的距離等于,即,求得,所以A選項是正確的.【點睛】判斷直線與圓的位置關系的常見方法:(1)幾何法:利用d與r的關系.(2)代數(shù)法:聯(lián)立方程之后利用判斷.(3)點與圓的位置關系法:若直線恒過定點且定點在圓內,可判斷直線與圓相交.上述方法中常用的是幾何法,點與圓的位置關系法適用于動直線問題9、C【解析】由題意可知,求出的值,從而可求出橢圓的離心率【詳解】解:由題意得,解得,所以離心率,故選:C10、A【解析】根據(jù)兩直線垂直的充要條件得到方程,解得即可;【詳解】解:因為直線與直線,且,所以,解得;故選:A11、D【解析】利用復數(shù)的幾何意義,即可判斷軌跡圖形,再求面積.【詳解】復數(shù)滿足,表示復數(shù)對應的點的軌跡是以點為圓心,半徑為3的圓,所以圍成圖形的面積等于.故選:D12、A【解析】求得以為直徑的圓的圓心和半徑,求得直線的方程,利用圓心到直線的距離小于半徑列不等式,化簡后求得橢圓離心率的取值范圍.【詳解】橢圓的左焦點,右焦點,上頂點,,所以為直徑的圓的圓心為,半徑為.直線的方程為,由于以線段為直徑的圓與相交,所以,,,,,所以橢圓的離心率的取值范圍是.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】若“”是真命題,則大于或等于函數(shù)在的最大值因為函數(shù)在上為增函數(shù),所以,函數(shù)在上的最大值為1,所以,,即實數(shù)的最小值為1.所以答案應填:1.考點:1、命題;2、正切函數(shù)的性質.14、【解析】先求出直線的斜率取值范圍,再根據(jù)斜率與傾斜角的關系,即可求出【詳解】可化為:,所以,由于,結合函數(shù)在上的圖象,可知故答案為:【點睛】本題主要考查斜率與傾斜角的關系的應用,以及直線的一般式化斜截式,屬于基礎題15、【解析】首先求得點A關于x軸的對稱點,然后數(shù)形結合結合直線方程求解點P的坐標即可.【詳解】點A(1,3)關于x軸的對稱點為A′(1,-3),如圖所示,連接A′B并延長交x軸于點P,即為所求直線A′B的方程是y+3=(x-1),即.令y=0,得x=13則點P的坐標是.【點睛】本題主要考查直線方程的應用,最值問題的求解,等價轉化的數(shù)學思想等知識,意在考查學生的轉化能力和計算求解能力.16、【解析】先設出拋物線方程,寫出準線方程和焦點坐標,利用得到拋物線方程,再利用三角形的面積公式進行求解.【詳解】設拋物線的方程為,則焦點為,準線方程為,由題意,得,,,所以,解得,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用等差數(shù)列的通項公式進行求解即可;(2)運用二次函數(shù)的性質進行求解即可.【小問1詳解】設等差數(shù)列的公差為,所以有,所以;【小問2詳解】由(1)可知:,當時,有最大項,最大項為:.18、(1)條件選擇見解析,,(2)【解析】(1)設數(shù)列的首項為,公差為d,選①由求解;選②由求解;選③由求解;則,由,利用數(shù)列通項與前n項和公式求解;(2)易知,再利用錯位相減法求解.【小問1詳解】解:設數(shù)列的首項為,公差為d,選①得,則,選②得,則,選③得,則,所以數(shù)列的通項公式為因為,所以當時,,則當時,,則,所以是以首項為2,公比為2的等比數(shù)列,所以【小問2詳解】因為,所以數(shù)列的前n項和①②①-②得∴,則19、(1)證明見解析,(2)4【解析】(1)由,得到,利用等比數(shù)列的定義求解;(2)由(1)得到,然后利用錯位相減法求解.【小問1詳解】證明:由,得,∴,∴數(shù)列是以3為公比,以為首項的等比數(shù)列,∴,即.【小問2詳解】由題意得.,兩式相減得:,因為,所以,所以使恒成立的最小的整數(shù)k為4.20、(1)證明見解析;(2)證明見解析.【解析】(1)根據(jù)給定條件,利用線面平行的判定推理作答.(2)利用正四棱錐的結構特征,結合線面垂直的判定推理作答.小問1詳解】在正四棱錐中,由正方形得:,而平面,平面,所以平面.【小問2詳解】在正四棱錐中,O為底面對角線的交點,則O是AC,BD的中點,而,,則,,因,平面,所以平面.21、(1)單調減區(qū)間為,單調增區(qū)間為;(2)證明見解析.【解析】(1)求得,根據(jù)其正負,即可判斷函數(shù)單調性從而求得函數(shù)單調區(qū)間;(2)根據(jù)題意,轉化目標不等式為,分別構造函數(shù),,利用導數(shù)研究其單調性,即可證明.【小問1詳解】因為,故可得,又為單調增函數(shù),令,解得,故當時,;當時,,故的單調減區(qū)間為,單調增區(qū)間為.【小問2詳解】當時,,要證,即證,又,則只需證,即證,令,,當時,,單調遞增,當時,,單調遞減,故當時,取得最大值;令,,又為單調增函數(shù),且時,,當時,,單調遞減,當時,,單調遞增,故當時,取得最小值.則,且當時,同時取得最小值和最大值,故,即,也即時恒成立.【點睛】本題考察利用導數(shù)求函數(shù)的單調區(qū)間,以及利用導數(shù)研究恒成立問題;處理本題的關鍵是合理轉化目標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論